Structural Dynamics of Myelin Basic Protein in the Assembly of a Model Membrane

1989 ◽  
pp. 383-388 ◽  
Author(s):  
P. Cavatorta ◽  
L. Masotti ◽  
A. G. Szabo ◽  
P. Riccio ◽  
E. Quagliariello
2019 ◽  
Author(s):  
M. Di Gioacchino ◽  
A. Bianconi ◽  
M. Burghammer ◽  
G. Ciasca ◽  
F. Bruni ◽  
...  

ABSTRACTLiving matter is a quasi-stationary out-of-equilibrium system; in this physical condition, structural fluctuations at nano- and meso-scales are needed to understand the physics behind its biological functionality. Myelin has a simple ultrastructure whose fluctuations show correlated disorder in its functional out-of-equilibrium state. However, there is no information on the relationship between this correlated disorder and the dynamics of the intrinsically disordered Myelin Basic Protein (MBP) which is expected to influence the membrane structure and overall functionality. In this work, we have investigated the role of this protein structural dynamics in the myelin ultrastructure fluctuations in and out-of-equilibrium conditions, by using synchrotron Scanning micro X Ray Diffraction and Small Angle X ray Scattering. We have induced the crossover from out-of-equilibrium functional state to in-equilibrium degeneration changing the pH far away from physiological condition. While the observed compression of the cytosolic layer thickness probes the unfolding of the P2 protein and of the cytoplasmic P0 domain (P0cyt), the intrinsic large MBP fluctuations preserve the cytosol structure also in the degraded state. Thus, the transition of myelin ultrastructure from correlated to uncorrelated disordered state, is significantly affected by the unfolding of the P2 and P0 proteins, which in this latter state do not act in synergistic manner with MBP to determine the membrane functionality.STATEMENT OF SIGNIFICANCEA better comprehension of myelin degenerative process and the role of protein dynamics in this biological membrane is a topic issue in today’s scientific community. The myelin ultrastructural fluctuations exhibit correlated disorder in its functional state, that becomes uncorrelated as it degenerates. In this work we elucidate the interplay of protein structural dynamics and myelin ultrastructure in the transition from its functional state to the degraded state. The results highlight that the intrinsically disordered Myelin Basic Protein (MBP) allows to preserve the myelin structure following both the small correlated fluctuations in physiological state and the large disordered fluctuations in degraded conditions, where the myelin functionality is close to being lost and the MBP remains the single active protein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhengjian Yan ◽  
Lei Chu ◽  
Xiaojiong Jia ◽  
Lu Lin ◽  
Si Cheng

Abstract Introduction Stem cell therapy using neural progenitor cells (NPCs) shows promise in mitigating the debilitating effects of spinal cord injury (SCI). Notably, myelin stimulates axonal regeneration from mammalian NPCs. This led us to hypothesize that myelin-associated proteins may contribute to axonal regeneration from NPCs. Methods We conducted an R-based bioinformatics analysis to identify key gene(s) that may participate in myelin-associated axonal regeneration from murine NPCs, which identified the serine protease myelin basic protein (Mbp). We employed E12 murine NPCs, E14 rat NPCs, and human iPSC-derived Day 1 NPCs (D1 hNPCs) with or without CRISPR/Cas9-mediated Mbp knockout in combination with rescue L1-70 overexpression, constitutively-active VP16-PPARγ2, or the PPARγ agonist ciglitazone. A murine dorsal column crush model of SCI utilizing porous collagen-based scaffolding (PCS)-seeded murine NPCs with or without stable Mbp overexpression was used to assess locomotive recovery and axonal regeneration in vivo. Results Myelin promotes axonal outgrowth from NPCs in an Mbp-dependent manner and that Mbp’s stimulatory effects on NPC neurite outgrowth are mediated by Mbp’s production of L1-70. Furthermore, we determined that Mbp/L1-70’s stimulatory effects on NPC neurite outgrowth are mediated by PPARγ-based repression of neuron differentiation-associated gene expression and PPARγ-based Erk1/2 activation. In vivo, PCS-seeded murine NPCs stably overexpressing Mbp significantly enhanced locomotive recovery and axonal regeneration in post-SCI mice. Conclusions We discovered that Mbp supports axonal regeneration from mammalian NPCs through the novel Mbp/L1cam/Pparγ signaling pathway. This study suggests that bioengineered, NPC-based interventions can promote axonal regeneration and functional recovery post-SCI.


1992 ◽  
Vol 267 (14) ◽  
pp. 9779-9782
Author(s):  
M.A. Moscarello ◽  
H Pang ◽  
C.R. Pace-Asciak ◽  
D.D. Wood

Sign in / Sign up

Export Citation Format

Share Document