NMR Studies of Protein-Ligand Interactions: Dihydrofolate Reductase

1986 ◽  
pp. 73-86
Author(s):  
G. C. K. Roberts
2019 ◽  
Vol 11 (14) ◽  
pp. 1811-1825 ◽  
Author(s):  
Claire Raingeval ◽  
Isabelle Krimm

In this review, we report NMR studies of ligand–GPCR interactions, including both ligand-observed and protein-observed NMR experiments. Published studies exemplify how NMR can be used as a powerful tool to design novel GPCR ligands and investigate the ligand-induced conformational changes of GPCRs. The strength of NMR also lies in its capability to explore the diverse signaling pathways and probe the allosteric modulation of these highly dynamic receptors. By offering unique opportunities for the identification, structural and functional characterization of GPCR ligands, NMR will likely play a major role for the generation of novel molecules both as new tools for the understanding of the GPCR function and as therapeutic compounds for a large diversity of pathologies.


Author(s):  
Michael Goldflam ◽  
Teresa Tarragó ◽  
Margarida Gairí ◽  
Ernest Giralt

2019 ◽  
Vol 26 (26) ◽  
pp. 4964-4983 ◽  
Author(s):  
CongBao Kang

Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.


Sign in / Sign up

Export Citation Format

Share Document