The Inverse Problem for the Wave Equation with an Unknown Source

Author(s):  
A. S. Blagoveshchenskii
1983 ◽  
Vol 43 (3) ◽  
pp. 553-564 ◽  
Author(s):  
J. R. Cannon ◽  
P. DuChateau

1987 ◽  
Vol 27 (5) ◽  
pp. 157-165
Author(s):  
I.P. Borovikov ◽  
Yu.L. Gaponenko

2002 ◽  
Vol 8 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Afet Golayoğlu Fatullayev

A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.


2019 ◽  
Vol 13 (3) ◽  
pp. 575-596 ◽  
Author(s):  
Jussi Korpela ◽  
◽  
Matti Lassas ◽  
Lauri Oksanen ◽  

2019 ◽  
Vol 27 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Ammar Khanfer ◽  
Alexander Bukhgeim

AbstractWe prove a global uniqueness theorem of reconstruction of a matrix-potential {a(x,t)} of one-dimensional wave equation {\square u+au=0}, {x>0,t>0}, {\square=\partial_{t}^{2}-\partial_{x}^{2}} with zero Cauchy data for {t=0} and given Cauchy data for {x=0}, {u(0,t)=0}, {u_{x}(0,t)=g(t)}. Here {u,a,f}, and g are {n\times n} smooth real matrices, {\det(f(0))\neq 0}, and the matrix {\partial_{t}a} is known.


2020 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Suzhen Jiang ◽  
Kaifang Liao ◽  
Ting Wei

AbstractIn this study, we consider an inverse problem of recovering the initial value for a multi-dimensional time-fractional diffusion-wave equation. By using some additional boundary measured data, the uniqueness of the inverse initial value problem is proven by the Laplace transformation and the analytic continuation technique. The inverse problem is formulated to solve a Tikhonov-type optimization problem by using a finite-dimensional approximation. We test four numerical examples in one-dimensional and two-dimensional cases for verifying the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document