The Finite Element Method in Thin Shell Theory: Application to Arch Dam Simulations

Author(s):  
Michel Bernadou ◽  
Jean-Marie Boisserie
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Chenfei Shao ◽  
Chongshi Gu ◽  
Zhenzhu Meng ◽  
Yating Hu

Both numerical simulations and data-driven methods have been applied in dam’s displacement modeling. For monitored displacement data-driven methods, the physical mechanism and structural correlations were rarely discussed. In order to take the spatial and temporal correlations among all monitoring points into account, we took the first step toward integrating the finite element method into a data-driven model. As the data-driven method, we selected the random coefficient model, which can make each explanatory variable coefficient of all monitoring points following one or several normal distributions. In this way, explanatory variables are constrained. Another contribution of the proposed model is that the actual elastic modulus at each monitoring point can be back-calculated. Moreover, with a Lagrange polynomial interpolation, we can obtain the distribution field of elastic modulus, rather than gaining one value for the whole dam in previous studies. The proposed model was validated by a case study of the concrete arch dam in Jinping-I hydropower station. It has a better prediction precision than the random coefficient model without the finite element method.


1989 ◽  
Vol 86 (4) ◽  
pp. 1245-1253 ◽  
Author(s):  
Bernard Hamonic ◽  
Jean Claude Debus ◽  
Jean‐Noël Decarpigny ◽  
Didier Boucher ◽  
Bernard Tocquet

2014 ◽  
Vol 1061-1062 ◽  
pp. 829-832
Author(s):  
Jia Long He ◽  
Yu Han Guo ◽  
Xi Zhu

The study on the calculation of the security of high concrete arch dam based on the finite element method will be studied and analyzed in this paper. For high concrete arch dam deformation and stability under normal water level and maximum flood level will be calculated, and the stress of each section of the dam and batholith around will be checked and analyzed, then this paper will come to the dam security conclusion finally.


2000 ◽  
Author(s):  
A. A. Lakis ◽  
A. Selmane ◽  
C. Dupuis

Abstract A theory is presented to predict the influence of non-linearities associated with the wall of the shell and with the fluid flow on the dynamic of elastic, thin, orthotropic open and closed cylindrical shells submerged and subjected to an internal and external fluid. The open shells are assumed to be freely simply-supported along their curved edges and to have arbitrary straight edge boundary conditions. The method developed is a hybrid of thin shell theory, fluid theory and the finite element method. The solution is divided into four parts. In part one, the displacement functions are obtained from Sanders’ linear shell theory and the mass and linear stiffness matrices for the empty shell are obtained by the finite element procedure. In part two, the modal coefficients derived from the Sanders-Koiter non-linear theory of thin shells are obtained for these displacement functions. Expressions for the second and third order non-linear stiffness matrices of the empty shell are then determined through the finite element method. In part three a fluid finite element is developed, the model requires the use of a linear operator for the velocity potential and a linear boundary condition of impermeability. With the non-linear dynamic pressure, we develop in the fourth part three non-linear matrices for the fluid. The non-linear equation of motion is then solved by the fourth-order Runge-Kutta numerical method. The linear and non-linear natural frequency variations are determined as a function of shell amplitudes for different cases.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document