thin shell theory
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 27 (none) ◽  
Author(s):  
Johannes Heiny ◽  
Samuel Johnston ◽  
Joscha Prochno

2021 ◽  
Vol 11 (15) ◽  
pp. 6781
Author(s):  
Chunqing Lu ◽  
Samuel T. Ariaratnam ◽  
Xuefeng Yan ◽  
Baosong Ma ◽  
Yahong Zhao ◽  
...  

This paper presents a study about the buckling behavior of thin stainless-steel lining (SSL) for trenchless repair of urban water supply networks under negative pressure. The critical buckling pressure and displacement (p–δ) curves, temperature changing curves, hoop and axial strain of the lining monitoring section and the strain changes with system pressure (p–ε) of the lining under the action of different diameters, different lining wall thickness and different ventilation modes were obtained through five groups of full-scale tests. The variation principles of the post-buckling pressure and the reduction regularity of the flowing section of the lining were further investigated. By comparing different pipeline buckling models and introducing thin-shell theory, the buckling model of liner supported by existing pipe was established. The comparison between the test results and thin-shell theory indicates that one of the significances of the enhancement coefficient k value is to change the constraint condition of the aspect ratio, l/R, thus increasing the critical buckling pressure of the lining. Finally, an improved lining buckling prediction model (enhancement model) is presented. A previous test is used as a case study with the results showing that the enhanced model is able to predict critical buckling pressure and lobe-starting amount of the liner, which can provide guidance for trenchless restoration of the liner with thin-walled stainless steel.


2021 ◽  
Vol 236 ◽  
pp. 05040
Author(s):  
WX Zhang

The shell mainly resists the external load by the mid plane stress distributed uniformly along the thickness, rather than the bending stress varying along the thickness. Compared with the traditional flat plate, the shell can make full use of the material strength, so it has greater bearing capacity. In water conservancy projects, shells are widely used, such as double curvature flat shell gate, arch dam and so on. Thin shell theory is a classical theory in shell.


2021 ◽  
Vol 28 (1) ◽  
pp. 628-637
Author(s):  
Yu-qiang Cheng ◽  
Chang-geng Shuai ◽  
Hua Gao

Abstract In this article, the parametric model for the stiffness characteristic and burst pressure of cord-reinforced air spring with winding formation is developed. Based on the non-geostrophic winding model and the assumption of cord cross-stability, the cord winding trajectory model of the capsule is established. Then, the anisotropic and nonlinear mechanics model of the capsule with complex cord winding trajectory variation characteristics is constructed by the classical thin-shell theory. The capsule state vector is solved by the extended homogeneous capacity precision integration method. Due to the complex coupling relationship between the capsule state vector and the internal air pressure, the stiffness characteristic is solved by the iterative integration method. The burst pressure of the air spring is solved by the Tsai–Hill strength theory. Eventually, the accuracy and reliability of the proposed method are verified by the experimental results. The effects of the material properties, winding parameters, and geometric structure parameters on stiffness characteristics and burst pressure are discussed. The results of this article provide an important theoretical basis for the performance design of cord-reinforced air springs with winding formation.


Author(s):  
G. Iarriccio ◽  
F. Pellicano

Abstract In this work, the nonlinear dynamic response of a shallow spherical cap subjected to a time-dependent pressure load is analyzed. The Novozhilov’s nonlinear thin shell theory is used to express the strain-displacement relations, geometric imperfections are considered. Using the Rayleigh-Ritz method, the displacement fields are expanded using a mixed series: Legendre polynomials are considered in the azimuthal direction and harmonic functions in the circumferential one. The dynamic model is derived by using the Lagrange equations. The response of a homogeneous shell, made of isotropic material, clamped at its ends, and subjected to an external pressure load is investigated: using the continuation software AUTO, the bifurcation analysis of equilibrium points and periodic responses has been performed. The model is validated by means of comparison with the existing results in literature for spherical shells having a circular base, in particular with models developed through the Marguerre’s theory.


2020 ◽  
Vol 117 (43) ◽  
pp. 26600-26607
Author(s):  
Anže Božič ◽  
Antonio Šiber

When pollen grains become exposed to the environment, they rapidly desiccate. To protect themselves until rehydration, the grains undergo characteristic infolding with the help of special structures in the grain wall—apertures—where the otherwise thick exine shell is absent or reduced in thickness. Recent theoretical studies have highlighted the importance of apertures for the elastic response and the folding of the grain. Experimental observations show that different pollen grains sharing the same number and type of apertures can nonetheless fold in quite diverse fashions. Using the thin-shell theory of elasticity, we show how both the absolute elastic properties of the pollen wall and the relative elastic differences between the exine wall and the apertures play an important role in determining pollen folding upon desiccation. Focusing primarily on colpate pollen, we delineate the regions of pollen elastic parameters where desiccation leads to a regular, complete closing of all apertures and thus to an infolding which protects the grain against water loss. Phase diagrams of pollen folding pathways indicate that an increase in the number of apertures leads to a reduction of the region of elastic parameters where the apertures close in a regular fashion. The infolding also depends on the details of the aperture shape and size, and our study explains how the features of the mechanical design of apertures influence the pollen folding patterns. Understanding the mechanical principles behind pollen folding pathways should also prove useful for the design of the elastic response of artificial inhomogeneous shells.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5454
Author(s):  
Yan Huo ◽  
Shunqing Ren ◽  
Zhennan Wei ◽  
Guoxing Yi

Due to complicated processing technology, the mass distribution of a hemispherical resonator made of fused silica is not uniform, which can affect the azimuth of the standing wave of a resonator under the linear vibration excitation. Therefore, the analysis of standing wave evolution of a resonator with mass imperfection under linear vibration excitation is of significance for the improvement of the output accuracy of a gyroscope. In this paper, it is assumed that the resonator containing the first–third harmonics of mass imperfection is excited by horizontal and vertical linear vibration, respectively; then, the equations of motion of an imperfect resonator under the second-order vibration mode are established by the elastic thin shell theory and Lagrange mechanics principle. Through error mechanism analysis, it is found that, when the frequency of linear vibration is equal to the natural frequency of resonator, the standing wave is bound in the azimuth of different harmonics of mass imperfection with the change in vibration excitation direction. In other words, there are parasitic components in the azimuth of the standing wave of a resonator under linear vibration excitation, which can cause distortion of the output signal of a gyroscope. On the other hand, according to the standing wave binding phenomenon, the azimuths of the first–third harmonics of mass imperfection of a resonator can also be identified under linear vibration excitation, which can provide a theoretical method for the mass balance of an imperfect resonator.


2020 ◽  
pp. 096739112092592
Author(s):  
Gao Hua ◽  
Shuai Changgeng ◽  
Xu Guomin

This article focuses on the establishment of theoretical model for the formation of balanced curved rubber hose under pressure. According to the rotation angle of the cord along the axial direction in the curved rubber hose is the same as that in the straight hose before forming, the theoretical model of the straight hose length was established. Then based on the thin shell theory without considering bending moments and shear force, and considering the deformation characteristics of the rope structure and the mechanical equilibrium angle of the hose, the theoretical model of the balance performance was established. According to the theoretical model, the influence of structural parameters of curved hose on the length of the straight hose and the balance performance of hose was studied. Eventually, the finite element model was established to simulate the deformation process of the curved hose. Based on the calculation results of the theoretical and simulation model, the experiment of forming and balance performance of the curved hose was carried out. The experimental results are in good agreement with the theoretical and simulation model.


Sign in / Sign up

Export Citation Format

Share Document