dam deformation
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 51)

H-INDEX

12
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 481
Author(s):  
Yongtao Liu ◽  
Dongjian Zheng ◽  
Christos Georgakis ◽  
Thomas Kabel ◽  
Enhua Cao ◽  
...  

During the operation period, the deformation of an ultra-high arch dam is affected by the large fluctuation of the reservoir water level. Under the dual coupling of the ultra-high dam and the complex water level conditions, the traditional variational analysis method cannot be sufficiently applied to its deformation analysis. The deformation analysis of the ultra-high arch dam, however, is very important in order to judge the dam safety state. To analyze the deformation law of different parts of an ultra-high arch dam, the panel data clustering theory is used to construct a Spatio-temporal characteristic model of dam deformation. In order to solve the difficult problem of the fluctuating displacement of dam deformation with water level effect, three displacement component indexes (absolute quantity, growing, and fluctuation) are proposed to characterize dam deformation. To further optimize the panel clustering deformation model, the objective weight coefficient of clustering comprehensive distance is calculated based on the CRITIC (CRiteria Importance Through Inter-criteria Correlation) method. The zoning rules of the ultra-high arch dam are established by using the idea of the CSP (Constraint Satisfaction Problem) index, and the complex water level of the reservoir is simulated in the whole process. Finally, the dynamic cluster analysis of dam deformation is realized. Through a case study, three typical working conditions including the rapid rise and fall of water level and the normal operation are calculated, and the deformation laws of different deformation zones are analyzed. The results show that the model can reasonably describe the deformation law of an ultra-high arch dam under different water levels, conveniently and intuitively select representative measuring points and key monitoring parts, effectively reducing the analysis workload of lots of measuring points, and improve the reliability of arch dam deformation analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jintao Song ◽  
Shengfei Zhang ◽  
Fei Tong ◽  
Jie Yang ◽  
Zhiquan Zeng ◽  
...  

A dam is a super-structure widely used in water conservancy engineering fields, and its long-term safety is a focus of social concern. Deformation is a crucial evaluation index and comprehensive reflection of the structural state of dams, and thus there are many research papers on dam deformation data analysis. However, the accuracy of deformation data is the premise of dam safety monitoring analysis, and original deformation data may have some outliers caused by manual errors or instruments aging after long-time running. These abnormal data have a negative impact on the evaluation of dam structural safety. In this study, an analytical method for detecting outliers of dam deformation data was established based on multivariable panel data and K-means clustering theory. First, we arranged the original spatiotemporal monitoring data into the multivariable panel data format. Second, the correlation coefficients between the deformation signals of different measuring points were studied based on K-means clustering theory. Third, the outlier detection rules were established through the changes of the correlation coefficients. Finally, the proposed model was applied to the Jinping-I Arch Dam in China which is the highest dam in the world, and results indicate that the detection method has high accuracy detection ability, which is valuable in dam safety monitoring applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yiqing Sun ◽  
Zhenzhong Shen ◽  
Liqun Xu ◽  
Lei Gan ◽  
Wenbing Zhang ◽  
...  

The deformation of dams has always been the focus of dam safety research. To more accurately study the effect of the Duncan–Chang model on the deformation of homogeneous Earth dams, this paper simulates the displacement variation of a homogeneous Earth dam through the finite element method based on the Duncan–Chang E-B model. The sensitivity of the Duncan–Chang E-B model parameters and the dam material density on the displacement of a homogeneous earthen dam in Gansu Province, China, were investigated using single-factor and multifactor analysis methods. The results show that the displacement variation of the dam during the completion and operation periods is consistent with the general rule for Earth and rock dams; the three parameters R f , φ 0 , and Δ φ are more sensitive to dam deformation; and the three parameters m , n , and K are less sensitive to dam deformation.


2021 ◽  
Author(s):  
Qianfeng Qin ◽  
Xuefei Bai ◽  
Jingnan Sun ◽  
Fang Li ◽  
Jiajing Zhu ◽  
...  

2021 ◽  
pp. 107537
Author(s):  
Wenlong Chen ◽  
Xiaoling Wang ◽  
Dawei Tong ◽  
Zhijian Cai ◽  
Yushan Zhu ◽  
...  

2021 ◽  
Vol 242 ◽  
pp. 112482
Author(s):  
Wenlong Chen ◽  
Xiaoling Wang ◽  
Jiajun Wang ◽  
Zhijian Cai ◽  
Hui Guo ◽  
...  

2021 ◽  
Author(s):  
Yang Ning ◽  
Mao Bin ◽  
Li Qing ◽  
Qin Yu ◽  
Liu Ying ◽  
...  

2021 ◽  
Vol 11 (16) ◽  
pp. 7334
Author(s):  
Rongyao Yuan ◽  
Chao Su ◽  
Enhua Cao ◽  
Shaopei Hu ◽  
Heng Zhang

Affected by various complex factors, dam deformation monitoring data usually reflect volatility and non-linear characteristics, and traditional prediction models are difficult to accurately capture the complex laws of dam deformation. A multi-scale deformation prediction model based on Variational Modal Decomposition (VMD) signal decomposition technology is proposed in this study. The method first decomposes the original deformation sequence into a series of sub-sequences with different frequencies, then the decomposed sub-sequences are modeled and predicted by Long Short-Term Memory neural network (LSTM) and Random Forest (RF) according to different frequencies. Finally, the prediction results of all sub-sequences are reconstructed to obtain the final deformation prediction results. In this process, it is proposed to use the instantaneous frequency mean method to determine the decomposition modulus of VMD. The innovation of this paper is to decompose the monitoring data with high volatility, and use LSTM and RF prediction, respectively, according to the frequency of the monitoring data, so as to realize the more accurate capture of volatility data during the prediction process. The case analysis results show that the proposed model can effectively solve the negative impact of the original data volatility on the prediction results, and is superior to the traditional prediction models in terms of stability and generalization ability, which has an important reference value for accurately predicting dam deformation and has far-reaching engineering significance.


Sign in / Sign up

Export Citation Format

Share Document