Single-Tube Heat Transfer Tests with Liquid Hydrogen

1961 ◽  
pp. 509-516 ◽  
Author(s):  
H. H. Walters
1977 ◽  
Vol 32 (6) ◽  
pp. 626-628
Author(s):  
V. M. Borishanskii ◽  
M. A. Gotovskii ◽  
V. B. Zhinkina ◽  
L. V. Kozlova ◽  
E. G. Kosheleva ◽  
...  

1960 ◽  
pp. 254-261 ◽  
Author(s):  
C. R. Class ◽  
J. R. DeHaan ◽  
M. Piccone ◽  
R. B. Cost

1990 ◽  
pp. 413-420
Author(s):  
M. W. Dew ◽  
J. M. Strohmayer ◽  
E. R. Johnson ◽  
J. R. Purcell

2014 ◽  
Vol 937 ◽  
pp. 375-380
Author(s):  
Yi Liu ◽  
Xin Chen

The numerical simulation of the ice melting processes in internal melt-ice-on-tube which is applied widely in the ice storage system is carried out. The dynamic mathematical models about melting are established and solved by using enthalpy method. Natural convection of the melted water in the course of melting is studied, and natural convection influences on single tube in melting heat transfer process is analyzed under the related parameters. Several conclusions are obtained:1. Because of natural convection of the melted water, the curve of melting interface is no longer a circle, but a curve changing with angle. The melting radius reaches minimum at the bottom and maximum at the top.2. The one with natural convention is compared to the other not considered. At initial stage, the influence of natural convection is smaller in the course of melting. However, the influence of natural convention increases along with melting.


Author(s):  
Byoung-Uhn Bae ◽  
Seok Kim ◽  
Yu-Sun Park ◽  
Bok-Deuk Kim ◽  
Kyoung-Ho Kang ◽  
...  

The Passive Auxiliary Feedwater System (PAFS) is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor Plus) which is intended to completely replace the conventional active auxiliary feedwater system. It removes the decay heat by cooling down the secondary system of the SG using condensation heat exchanger installed in the Passive Condensation Cooling Tank (PCCT). With an aim of validating the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop), was constructed to experimentally investigate the condensation heat transfer and natural convection phenomena in the PAFS. It simulates a single tube of the passive condensation heat exchangers, a steam-supply line, a return-water line, and a PCCT with a reduced area, which is equivalent to 1/240 of the prototype according to a volumetric scaling methodology with a full height. The objective of the experiment is to investigate the cooling performance and natural circulation characteristics of the PAFS by simulating a steady state condition of the thermal power. From the experiment, two-phase flow phenomena in the horizontal heat exchanger and PCCT were investigated and the cooling capability of the condensation heat exchanger was validated. Test results showed that the design of the condensation heat exchanger in PAFS could satisfy the requirement for heat removal rate of 540 kW per a single tube and the prevention of water hammer phenomenon inside the tube. It also proved that the operation of PAFS played an important role in cooling down the decay heat by natural convection without any active system. The present experimental results will contribute to improve the model of the condensation and boiling heat transfer, and also to provide the benchmark data for validating the calculation performance of a thermal hydraulic system analysis code with respect to the PAFS.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
S. R. Darr ◽  
J. W. Hartwig ◽  
J. Dong ◽  
H. Wang ◽  
A. K. Majumdar ◽  
...  

Recently, two-phase cryogenic flow boiling data in liquid nitrogen (LN2) and liquid hydrogen (LH2) were compared to the most popular two-phase correlations, as well as correlations used in two of the most widely used commercially available thermal/fluid design codes in Hartwig et al. (2016, “Assessment of Existing Two Phase Heat Transfer Coefficient and Critical Heat Flux on Cryogenic Flow Boiling Quenching Experiments,” Int. J. Heat Mass Transfer, 93, pp. 441–463). Results uncovered that the correlations performed poorly, with predictions significantly higher than the data. Disparity is primarily due to the fact that most two-phase correlations are based on room temperature fluids, and for the heating configuration, not the quenching configuration. The penalty for such poor predictive tools is higher margin, safety factor, and cost. Before control algorithms for cryogenic transfer systems can be implemented, it is first required to develop a set of low-error, fundamental two-phase heat transfer correlations that match available cryogenic data. This paper presents the background for developing a new set of quenching/chilldown correlations for cryogenic pipe flow on thin, shorter lines, including the results of an exhaustive literature review of 61 sources. New correlations are presented which are based on the consolidated database of 79,915 quenching points for a 1.27 cm diameter line, covering a wide range of inlet subcooling, mass flux, pressure, equilibrium quality, flow direction, and even gravity level. Functional forms are presented for LN2 and LH2 chilldown correlations, including film, transition, and nucleate boiling, critical heat flux, and the Leidenfrost point.


Author(s):  
T Matsumoto ◽  
Y Shirai ◽  
M Shiotsu ◽  
K Fujita ◽  
Y Iwami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document