Differential Adaptation in Spacially Heterogeneous Environments and Host-Parasite Coevolution

Author(s):  
Sylvain Gandon ◽  
Dieter Ebert ◽  
Isabelle Olivieri ◽  
Yannis Michalakis
2016 ◽  
Vol 12 (2) ◽  
pp. 20150879 ◽  
Author(s):  
Florien A. Gorter ◽  
Pauline D. Scanlan ◽  
Angus Buckling

Parasite local adaptation, the greater performance of parasites on their local compared with foreign hosts, has important consequences for the maintenance of diversity and epidemiology. While the abiotic environment may significantly affect local adaptation, most studies to date have failed either to incorporate the effects of the abiotic environment, or to separate them from those of the biotic environment. Here, we tease apart biotic and abiotic components of local adaptation using the bacterium Pseudomonas fluorescens and its viral parasite bacteriophage Φ2. We coevolved replicate populations of bacteria and phages at three different temperatures, and determined their performance against coevolutionary partners from the same and different temperatures. Crucially, we measured performance at different assay temperatures, which allowed us to disentangle adaptation to biotic and abiotic habitat components. Our results show that bacteria and phages are more resistant and infectious, respectively, at the temperature at which they previously coevolved, confirming that local adaptation to abiotic conditions can play a crucial role in determining parasite infectivity and host resistance. Our work underlines the need to assess host–parasite interactions across multiple relevant abiotic environments, and suggests that microbial adaption to local temperatures can create ecological barriers to dispersal across temperature gradients.


Author(s):  
James A. Swenberg ◽  
Adalbert Koestner ◽  
R.P. Tewari

Previous investigations of pathogenetic mechanisms in mycotic encephalitis have been restricted to light microscopic and mycologic approaches. In this study, electron microscopy was utilized to determine the mode of vascular penetration and the cellular and subcellular host-parasite interrelationships in brains of mice infected with Oidiodendron kalrai. This newly isolated fungus was selected because of its ability to consistently produce encephalitis with gross and microscopic lesions similar to those observed in naturally occuring mycoses.


Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.


Author(s):  
Akira Wake ◽  
Herbert R. Morgan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document