Factors Affecting Gene Flow between the Host Races of Eurosta solidaginis

Author(s):  
Joanne K. Itami ◽  
Timothy P. Craig ◽  
John D. Horner
2004 ◽  
Vol 271 (1534) ◽  
pp. 97-105 ◽  
Author(s):  
Igor Emelianov ◽  
Frantiŝek Marec ◽  
James Mallet

Oecologia ◽  
1997 ◽  
Vol 111 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Africa Gómez ◽  
María José Carmona ◽  
Manuel Serra

2019 ◽  
Vol 22 (4) ◽  
pp. 404-412
Author(s):  
Kei W. Matsubayashi ◽  
Sih Kahono ◽  
Sri Hartini ◽  
Haruo Katakura

1985 ◽  
Vol 75 (1) ◽  
pp. 143-158 ◽  
Author(s):  
I. Denholm ◽  
R. M. Sawicki ◽  
A. W. Farnham

AbstractWays in which the bionomics and dynamics of populations of Musca domestica L. can influence the development of insecticide resistance, and how resistance genes spread within and between farms was investigated in a three-year study of the biology and movement of flies on 63 pig-rearing farms in south-eastern England. House-flies survived winter only on 12 ‘overwintering’ farms where they bred in heated pig-rearing houses (‘closed buildings’) throughout the year. In late spring they appeared out doors, and their descendents founded populations on neighbouring ‘summer’ farms where pigs breed only in unheated (‘open’) buildings. There, flies reached peak numbers in August–September and died out by mid-November. Gene flow within and between farms was studied indirectly by mark-release-recapture of colour-marked adults, and directly by monitoring the diffusion of the visible marker gene bwb (brown body) introduced into indigenous house-fly populations. Although movement between open buildings within a farm was unrestricted, dispersal between farms was limited, and gene flow between even adjacent closed buildings was indirect, and required more than one generation. Likewise, indirect and gradual gene flow during summer probably accounted for the similarity in type and frequency of other independent genetic markers of local overwintering populations. Thus closed buildings played a key role in house-fly ecology and population genetics. Unfortunately, control with persistent insecticides in these buildings ensures efficient resistance selection, ultimately resulting in its spread to all pig farms. Less selective control practices are needed at these sites.


2002 ◽  
Vol 357 (1420) ◽  
pp. 471-492 ◽  
Author(s):  
Michele Drès ◽  
James Mallet

The existence of a continuous array of sympatric biotypes—from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species—can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant–feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca . 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one–half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by–product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in half of the cases attest to the power of natural selection to maintain multilocus polymorphisms with substantial linkage disequilibrium, in spite of probable gene flow; and (iii) this linkage disequilibrium should permit additional host adaptation, leading to further reproductive isolation via pleiotropy, and also provides conditions suitable for adaptive evolution of mate choice (reinforcement) to cause still further reductions in gene flow. Current data are too sparse to rule out a cryptic discontinuity in the apparently stable sympatric route from host–associated polymorphism to host–associated species, but such a hiatus seems unlikely on present evidence. Finally, we discuss applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite–resistant plants.


1991 ◽  
Vol 21 (8) ◽  
pp. 1155-1170 ◽  
Author(s):  
F. Di-Giovanni ◽  
P. G. Kevan

Pollen contamination causes major losses to genetic improvement from selection and breeding of "plus" trees in conifer seed orchards. Genetic losses arise by the influx of "wild" conspecific pollen into seed orchards and its deleterious fertilization of superior genetic lines. This review firstly addresses the basis of the problem: pollen, conifer reproduction, and the concept of seed orchard management, especially in regard to reduction of contamination. Secondly, the physical processes of pollen liberation, dispersal, and deposition are described, and examples of previous studies illuminating these phenomena given. Thirdly, past research on measuring pollen dispersal in natural stands and seed orchards in discussed in the light of modelling techniques used to predict these types of dispersal pattern. Work on the other facets of contamination measurement, gene-flow studies, are listed. It is concluded that a detailed study that combines both the physical and gene-flow aspects of pollen dispersal should be initiated to compare and contrast the two methods, and that attempts to model pollen contamination should be sought.


2015 ◽  
Vol 72 (5) ◽  
pp. 1440-1448 ◽  
Author(s):  
Zhiqiang Han ◽  
Wei Zheng ◽  
Wenbin Zhu ◽  
Cungen Yu ◽  
Bonian Shui ◽  
...  

Abstract Three primary factors affecting genetic patterns of marine species in the Northwestern Pacific Ocean have been proposed: isolation and population expansion during Pleistocene glacial cycles, ocean currents facilitating the gene flow, and the Yangtze River outflow imposing a physical barrier to gene flow. Here, we examined these factors affecting population structuring of the Asian paddle crab, Charybdis japonica, in the Yellow Sea, East China Sea, and adjacent areas. Genetic variation in nine populations of C. japonica (n = 169) was determined from partial mitochondrial cytochrome c oxidase subunit I sequences. Among the 14 haplotypes identified, a dominant haplotype H1 was present in all populations, and a relatively abundant localized haplotype H2 was found in four of the northern populations. Furthermore, the frequency of the common haplotype H1 decreased from south to north. A genetic discontinuity was detected in Haizhou Bay, which divided species into two groups (north group and south group). The lack of genetic structure in the south and north groups indicates high dispersal of C. japonica within groups. Local marine gyres in Haizhou Bay might be responsible for the divergence of the north and south groups. Our study highlights the importance of local marine gyres for influencing genetic structure in marine coastal species in the Northwestern Pacific, especially in species spawning inshore.


Sign in / Sign up

Export Citation Format

Share Document