pollen dispersal
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 58)

H-INDEX

53
(FIVE YEARS 2)

Genetics ◽  
2021 ◽  
Author(s):  
Bogi Trickovic ◽  
Sylvain Glémin

Abstract Populations often inhabit multiple ecological patches and thus experience divergent selection, which can lead to local adaptation if migration is not strong enough to swamp locally adapted alleles. Conditions for the establishment of a locally advantageous allele have been studied in randomly mating populations. However, many species reproduce, at least partially, through self-fertilization, and how selfing affects local adaptation remains unclear and debated. Using a two-patch branching process formalism, we obtained a closed-form approximation under weak selection for the probability of establishment of a locally advantageous allele (P) for arbitrary selfing rate and dominance level, where selection is allowed to act on viability or fecundity, and migration can occur via seed or pollen dispersal. This solution is compared to diffusion approximation and used to investigate the consequences of a shift in a mating system on P, and the establishment of protected polymorphism. We find that selfing can either increase or decrease P, depending on the patterns of dominance in the two patches, and has conflicting effects on local adaptation. Globally, selfing favors local adaptation when locally advantageous alleles are (partially) recessive, when selection between patches is asymmetrical and when migration occurs through pollen rather than seed dispersal. These results establish a rigorous theoretical background to study heterogeneous selection and local adaptation in partially selfing species.



Trees ◽  
2021 ◽  
Author(s):  
Maria A. Moreno ◽  
David Boshier ◽  
Roberto Tarazi ◽  
Evandro V. Tambarussi ◽  
Bruna I. Aguiar ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan-Chih Su ◽  
Cheng-Bin Lee ◽  
Tien-Joung Yiu ◽  
Bo-Jein Kuo

AbstractThe presence of the field border (FB), such as roadways or unplanted areas, between two fields is common in Asian farming system. This study evaluated the effect of the FB on the cross-pollination (CP) and predicted the CP rate in the field considering and not considering FB. Three experiments including 0, 6.75, and 7.5 m width of the FB respectively were conducted to investigate the effect of distance and the FB on the CP rate. The dispersal models combined kernel and observation model by calculating the parameter of observation model from the output of kernel. These models were employed to predict the CP rate at different distances. The Bayesian method was used to estimate parameters and provided a good prediction with uncertainty. The highest average CP rates in the field with and without FB were 74.29% and 36.12%, respectively. It was found that two dispersal models with the FB effect displayed a higher ability to predict average CP rates. The correlation coefficients between actual CP rates and CP rates predicted by the dispersal model combined zero-inflated Poisson observation model with compound exponential kernel and modified Cauchy kernel were 0.834 and 0.833, respectively. Furthermore, the predictive uncertainty was reducing using the dispersal models with the FB effect.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Suni Lee ◽  
Yukiyoshi Hyo ◽  
Shoko Yamamoto ◽  
Hiroshi Okamoto ◽  
Yoshio Fujii ◽  
...  

Pollen allergy to Japanese cedar and cypress is a serious illness that impairs daily life and sleep, especially during pollen season. We have reported that placing a cloth panel containing a specific natural ore powder (CCSNOP) in a room may alleviate the symptoms of hay fever and may also benefit the immune system. This ore is from the Aso mountain range, a volcano on Kyushu Island in the southwestern part of Japan. The purpose of this study was to verify the effect of CCSNOP on cypress pollen. Thirty-one double-blind tests, which investigated cedar pollen allergies, were conducted from February to March 2018 and have already been reported. After this, in early April, 10 of these cases were recruited and all had CCSNOP installed in their bedrooms. Before that, various symptoms and changes in medication were recorded in a “Symptom Diary” and included a mood survey by a questionnaire, stress test using saliva amylase, changes in cypress-specific immunoglobulins IgE and IgG4 by blood sampling, and eosinophil changes. In addition, changes in 29 types of cytokines were investigated. Exposure to CCSNOP relieved symptoms and subjects decreased their intake of medication. There was no change in mood or stress, but eosinophil levels tended to decrease. Although there were no statistical changes in cypress-specific IgE or IgG4, an increase in the former and a decrease in the latter were observed in some individuals during the period of pollen dispersal. Furthermore, levels of GM-CSF and IL8 decreased significantly after use of CCSNOP. The CCSNOP was shown to be effective against cypress pollen allergy, and future investigations will be necessary to observe the long-term effects of CCSNOP.



2021 ◽  
Author(s):  
Biao-Feng Zhou ◽  
Shuai Yuan ◽  
Andrew Crowl ◽  
Yi-Ye Liang ◽  
Yong Shi ◽  
...  

Abstract Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. An unparalleled transformation of forest dynamics began with the rapid diversification of major lineages within 15 million years following the K-Pg extinction. Innovations related to seed and pollen dispersal are implicated in triggering waves of continental radiations, while fungal symbioses fortified a competitive edge underground. We detected introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, further amplifying global proliferation.



2021 ◽  
Vol 9 ◽  
Author(s):  
Cássia Bitencourt ◽  
Nicolai M. Nürk ◽  
Alessandro Rapini ◽  
Mark Fishbein ◽  
André O. Simões ◽  
...  

Apocynaceae (the dogbane and milkweed family) is one of the ten largest flowering plant families, with approximately 5,350 species and diverse morphology and ecology, ranging from large trees and lianas that are emblematic of tropical rainforests, to herbs in temperate grasslands, to succulents in dry, open landscapes, and to vines in a wide variety of habitats. Despite a specialized and conservative basic floral architecture, Apocynaceae are hyperdiverse in flower size, corolla shape, and especially derived floral morphological features. These are mainly associated with the development of corolline and/or staminal coronas and a spectrum of integration of floral structures culminating with the formation of a gynostegium and pollinaria—specialized pollen dispersal units. To date, no detailed analysis has been conducted to estimate the origin and diversification of this lineage in space and time. Here, we use the most comprehensive time-calibrated phylogeny of Apocynaceae, which includes approximately 20% of the species covering all major lineages, and information on species number and distributions obtained from the most up-to-date monograph of the family to investigate the biogeographical history of the lineage and its diversification dynamics. South America, Africa, and Southeast Asia (potentially including Oceania), were recovered as the most likely ancestral area of extant Apocynaceae diversity; this tropical climatic belt in the equatorial region retained the oldest extant lineages and these three tropical regions likely represent museums of the family. Africa was confirmed as the cradle of pollinia-bearing lineages and the main source of Apocynaceae intercontinental dispersals. We detected 12 shifts toward accelerated species diversification, of which 11 were in the APSA clade (apocynoids, Periplocoideae, Secamonoideae, and Asclepiadoideae), eight of these in the pollinia-bearing lineages and six within Asclepiadoideae. Wind-dispersed comose seeds, climbing growth form, and pollinia appeared sequentially within the APSA clade and probably work synergistically in the occupation of drier and cooler habitats. Overall, we hypothesize that temporal patterns in diversification of Apocynaceae was mainly shaped by a sequence of morphological innovations that conferred higher capacity to disperse and establish in seasonal, unstable, and open habitats, which have expanded since the Eocene-Oligocene climate transition.



The Holocene ◽  
2021 ◽  
pp. 095968362110417
Author(s):  
Martin Theuerkauf ◽  
John Couwenberg

Pollen productivity estimates (PPEs) are a key parameter for quantitative land-cover reconstructions from pollen data. PPEs are commonly estimated using modern pollen-vegetation data sets and the extended R-value (ERV) model. Prominent discrepancies in the existing studies question the reliability of the approach. We here propose an implementation of the ERV model in the R environment for statistical computing, which allows for simplified application and testing. Using simulated pollen-vegetation data sets, we explore sensitivity of ERV application to (1) number of sites, (2) vegetation structure, (3) basin size, (4) noise in the data, and (5) dispersal model selection. The simulations show that noise in the (pollen) data and dispersal model selection are critical factors in ERV application. Pollen count errors imply prominent PPE errors mainly for taxa with low counts, usually low pollen producers. Applied with an unsuited dispersal model, ERV tends to produce wrong PPEs for additional taxa. In a comparison of the still widely applied Prentice model and a Lagrangian stochastic model (LSM), errors are highest for taxa with high and low fall speed of pollen. The errors reflect the too high influence of fall speed in the Prentice model. ERV studies often use local scale pollen data from for example, moss polsters. Describing pollen dispersal on his local scale is particularly complex due to a range of disturbing factors, including differential release height. Considering the importance of the dispersal model in the approach, and the very large uncertainties in dispersal on short distance, we advise to carry out ERV studies with pollen data from open areas or basins that lack local pollen deposition of the taxa of interest.



PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255275
Author(s):  
Ricardo O. Manoel ◽  
Bruno C. Rossini ◽  
Maiara R. Cornacini ◽  
Mário L. T. Moraes ◽  
José Cambuim ◽  
...  

Gene flow studies provide information on gene exchange between populations, which is essential for developing genetic conservation strategies. Such analyses enable a better understanding of the life history and seed and pollen dispersal mechanisms of plant species. In this study, we investigate pollen and seed flow in a regenerant population of the pioneer species Astronium fraxinifolium in an area degraded during the construction of a hydroelectric dam. We mapped, sampled, sexed, and genotyped 386 individuals in the regenerant population (RP), as well as 128 adult trees located along two highways adjacent to the degraded area; one in Mato Grosso do Sul State (MS) and other in São Paulo State (SP). Parentage analyses was carried out for 370 individuals of the RP population, using as putative parents 348 individuals from RP and all 128 individuals sampled in MS and SP. Based on parentage analysis and eight microsatellite loci, our analyses revealed that for individuals of the RP with an identified father (pollen donor), 1.1% of the pollen was dispersed up to 532 m, while for those with an identified mother (seed donor), 0.5% of seeds were dispersed up to 4,782 m. However, a large proportion of pollen (76.5%) and seeds (57%) immigrated from trees outside the sampled populations. Pollen and seeds were dispersed through a pattern of isolation by distance. Genetic diversity was significantly similar between adults of both highway populations and individuals from RP, with significant levels of inbreeding detected only in RP. Our results demonstrate that the nearest trees contributed pollen and seeds for the recovery of the degraded area, indicating reproductive spatial isolation among the sampled populations due to the damming of the river. Such results help to understand the process of regeneration for A. fraxinifolium in regenerant populations to inform strategies for conservation and environmental recovery with this species.



2021 ◽  
Author(s):  
Jeanne Tonnabel ◽  
Patrice David ◽  
John Pannell

Plant sexual dimorphism is thought to evolve in response to sex-specific selection associated with competition for access to mates or resources, both of which will often be density-dependent. In wind-pollinated plants in particular, vegetative traits can have an important influence on both resource acquisition and the pollen dispersal and receipt, with potential conflict between these two components of fitness. We evaluated the role of plant density in shaping plant traits by measuring evolutionary responses in experimental populations of the sexually dimorphic wind-pollinated plant Mercurialis annua. After three generations of evolution, we observed divergence between high- and low-density populations in several vegetative traits, whereas there was no divergence for reproductive traits. A reversal in the direction of sexually dimorphic traits expressed in young plants evolved in both low- and high-density populations compared to the original population (stored as seeds). Compared to the source population, males at high density evolved to be taller when young, whereas at low density young females tended to become smaller. These results demonstrate that a simple change in plant density can induce rapid, age-dependent and sex-specific evolution in the ontogeny of vegetative organs, and illustrates the power of experimental evolution for investigating plant trait evolution.



Sign in / Sign up

Export Citation Format

Share Document