Thermodynamics and Physical Properties of Compressible Fluids

Author(s):  
Shih-I Pai ◽  
Shijun Luo
2021 ◽  
Author(s):  
Masanori Kameyama

Abstract In this paper we carried out a series of linear analysis on the onset of thermal convection of highly compressible fluids whose physical properties strongly vary in space in convecting vessels either of a three-dimensional spherical shell or a two-dimensional spherical annulus. The variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's mass, while the thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively. Our analysis showed that, for the cases with strong temperature-dependence in viscosity and strong depth-dependence in thermal conductivity, the critical Rayleigh number is on the order of 108 to 109, 15 implying that the mantle convection of massive super-Earths is most likely to fall in the stagnant-lid regime very close to the critical condition, if the properties of their mantle materials are quite similar to the Earth's. Our analysis also demonstrated that the structures of incipient ows of stagnant-lid convection in the presence of strong adiabatic compression are significantly affected by the depth-dependence in thermal conductivity and the geometries of convecting vessels, through the changes in the static stability of thermal stratification of the reference state. When the increase in thermal conductivity with depth is suffciently large, the thermal stratification can be greatly stabilised at depth, further inducing regions of insignificant fluid motions above the bottom hot boundaries in addition to the stagnant lids along the top cold surfaces. We can therefore speculate that the stagnant-lid convection in the mantles of massive super-Earths is accompanied by another motionless regions at the base of the mantles if the thermal conductivity strongly increases with depth (or pressure), even though their occurrence is hindered by the effects the spherical geometries of convecting vessels.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Author(s):  
James Mark ◽  
Kia Ngai ◽  
William Graessley ◽  
Leo Mandelkern ◽  
Edward Samulski ◽  
...  
Keyword(s):  

1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

2013 ◽  
Author(s):  
Kristina F. Pattison ◽  
Jennifer R. Laude ◽  
Thomas R. Zentall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document