section electron microscopy
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shang Mu ◽  
Szi-chieh Yu ◽  
Nicholas L. Turner ◽  
Claire E. McKellar ◽  
Sven Dorkenwald ◽  
...  

We reconstructed all cell nuclei in a 3D image of a Drosophila brain acquired by serial section electron microscopy (EM). The total number of nuclei is approximately 133,000, at least 87% of which belong to neurons. Neuronal nuclei vary from several hundred down to roughly 5 cubic micrometers. Glial nuclei can be even smaller. The optic lobes contain more than two times the number of cells than the central brain. Our nuclear reconstruction serves as a spatial map and index to the cells in a Drosophila brain.


Author(s):  
Ramesh Iyer ◽  
Clara Franzini-Armstrong

The inositol-3-phosphate receptors (IP3Rs) of cerebellar Purkinje cells are located in abundant, large stacks of endoplasmic reticulum (ER) cisternae. Using thin section electron microscopy, we identify very frequent associations of the ER stacks with mitochondria. The associations have two components: a single, close ER-mitochondria contact on one side to the stack, and multiple layers of ER cisternae decorated by IP3Rs receptors on the side away from the mitochondria. Due to their location in the stacks, IP3Rs are never in contact with the mitochondria, although they are in their vicinity. We conclude that transfer of Ca2+ between ER and mitochondria is not directly mediated by IP3Rs, but is based on mitochondrial Ca2+ uptake from the local cytoplasmic spikes during IP3Rs’ activity.


2021 ◽  
Author(s):  
Zhikai Liu ◽  
David Grant Colburn Hildebrand ◽  
Joshua L. Morgan ◽  
Nicholas Slimmon ◽  
Martha W. Bagnall

Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates a directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and temporal kinetics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and kinetics, aligning them with downstream motor circuits and behaviors.


2020 ◽  
Vol 27 (6) ◽  
pp. 1614-1617
Author(s):  
Jingtao Zhu ◽  
Jiayi Zhang ◽  
Haochuan Li ◽  
Yuchun Tu ◽  
Jinwen Chen ◽  
...  

The `water window', covering 2.4–4.4 nm, is an important wavelength range particularly essential to biology research. Cr/Ti multilayers are one of the promising reflecting elements in this region because the near-normal-incidence reflectivity is theoretically as high as 64% at 2.73 nm. However, due to multilayer imperfections, the reported reflectivity is lower than 3% for near-normal incidence. Here, B and C were intentionally incorporated into ultra-thin Cr/Ti soft X-ray multilayers by co-deposition of B4C at the interfaces. The effect on the multilayer structure and composition has been investigated using X-ray reflectometry, X-ray photoelectron spectroscopy, and cross-section electron microscopy. It is shown that B and C are mainly bonded to Ti sites, forming a nonstoichiometric TiB x C y composition, which hinders the interface diffusion, supresses the crystallization of the Cr/Ti multilayer and dramatically improves the interface quality of Cr/TiB x C y multilayers. As a result, the near-normal-incidence reflectivity of soft X-rays increases from 4.48% to 15.75% at a wavelength of 2.73 nm.


2020 ◽  
Author(s):  
Zhikai Liu ◽  
Yukiko Kimura ◽  
Shin-ichi Higashijima ◽  
David G. Hildebrand ◽  
Joshua L. Morgan ◽  
...  

AbstractAs sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict this complexity is due to convergent inputs from neurons with diverse response properties, in most vertebrate systems convergence has only been inferred rather than tested directly. Here we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. An independent approach, serial section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Our data also resolve a long-standing contradiction between anatomical and physiological analyses by revealing that sensory responses are produced by sparse but powerful inputs from vestibular afferents. Together these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.


2019 ◽  
Vol 963 ◽  
pp. 127-130
Author(s):  
Jörg Pezoldt ◽  
Charbel Zgheib ◽  
Thomas Stauden ◽  
Gernot Ecke ◽  
Thomas Kups ◽  
...  

Ternary (Si1-xCy)Gex+y solid solutions were grown on Si-face 4H-SiC applying atomic layer molecular beam epitaxy at low temperatures. The grown layers consist of twinned 3C-SiC revealed by cross section electron microscopy. The germanium was incorporated on silicon lattice sites as revealed by atomic location by channeling enhanced microanalysis transmission electron microscopy studies. The Ge concentration of the grown 3C-(Si1-xCy)Gex+y heteroepitaxial layers decreases with increasing growth temperatures, but exceeds the solid solubility limit.


Sign in / Sign up

Export Citation Format

Share Document