Hierarchical and Mean-Field Stepping Stone Models

Author(s):  
D. A. Dawson
1970 ◽  
Vol 2 (02) ◽  
pp. 229-258 ◽  
Author(s):  
Takeo Maruyama

The stepping stone model of population structure, of finite length, is analysed with special reference to the variance, and correlation coefficients of gene frequencies. Explicit formulas for these quantities are obtained. The model is also analysed for the genetic variability maintained in the population. In order to check the validity of the analytical results, several numerical computations were carried out using two different methods: iterations and Monte Carlo experiments. The values obtained by these numerical methods agree well with the theoretical values obtained by formulas derived analytically.


1986 ◽  
Vol 18 (03) ◽  
pp. 581-627 ◽  
Author(s):  
Eric Renshaw

A survey is presented of stochastic and deterministic developments in the study of the effects of nearest-neighbour ‘migration’ between spatially separated ‘colonies’. Such processes are of general applicability, and are relevant to any vector processX(t) = (X1(t), · ··,XN(t)) in which the arrival, departure and transfer rates for the states {X(t) = n} may be written in the formαi(ni), βi(ni) andγij(ni,nj), respectively, wheren =(n1,· ··, nN). Whilst the main body of results are described in terms of birth-death, genetic and epidemic situations, the final section examines within colony interaction in the context of spatial predator-prey processes.


Evolution ◽  
1998 ◽  
Vol 52 (5) ◽  
pp. 1423 ◽  
Author(s):  
Michael A. D. Goodisman ◽  
D. DeWayne Shoemaker ◽  
Marjorie A. Asmussen

1995 ◽  
Vol 5 (4) ◽  
pp. 1025-1060 ◽  
Author(s):  
Hyun-Chung Kang ◽  
Stephen M. Krone ◽  
Claudia Neuhauser

Sign in / Sign up

Export Citation Format

Share Document