Stepping Stone Models in Population Genetics and Population Dynamics

Author(s):  
Tokuzo Shiga
1986 ◽  
Vol 18 (03) ◽  
pp. 581-627 ◽  
Author(s):  
Eric Renshaw

A survey is presented of stochastic and deterministic developments in the study of the effects of nearest-neighbour ‘migration’ between spatially separated ‘colonies’. Such processes are of general applicability, and are relevant to any vector processX(t) = (X1(t), · ··,XN(t)) in which the arrival, departure and transfer rates for the states {X(t) = n} may be written in the formαi(ni), βi(ni) andγij(ni,nj), respectively, wheren =(n1,· ··, nN). Whilst the main body of results are described in terms of birth-death, genetic and epidemic situations, the final section examines within colony interaction in the context of spatial predator-prey processes.


1986 ◽  
Vol 18 (3) ◽  
pp. 581-627 ◽  
Author(s):  
Eric Renshaw

A survey is presented of stochastic and deterministic developments in the study of the effects of nearest-neighbour ‘migration’ between spatially separated ‘colonies’. Such processes are of general applicability, and are relevant to any vector process X(t) = (X1(t), · ··, XN(t)) in which the arrival, departure and transfer rates for the states {X(t) = n} may be written in the form α i(ni), βi(ni) and γ ij(ni, nj), respectively, where n = (n1, · ··, nN). Whilst the main body of results are described in terms of birth-death, genetic and epidemic situations, the final section examines within colony interaction in the context of spatial predator-prey processes.


Author(s):  
Michael B. Bonsall

Understanding methods of vector control is essential to vector-borne disease (VBD) management. Vaccines or standard medical interventions for many VDBs do not exist or are poorly developed so disease control is focused on managing vector numbers and dynamics. This involves understanding not only the population dynamics but also the population genetics of vectors. Using mosquitoes as a case study, in this chapter, the modern genetics-based methods of vector control (self-limiting, self-sustaining) on mosquito population and disease suppression will be reviewed. These genetics-based methods highlight the importance of understanding the interplay between genetics and ecology to develop optimal, cost-effective solutions for control. The chapter focuses on how these genetics-based methods can be integrated with other interventions, and concludes with a summary of regulatory and policy perspectives about the use of these approaches in the management of VBDs.


1970 ◽  
Vol 2 (02) ◽  
pp. 229-258 ◽  
Author(s):  
Takeo Maruyama

The stepping stone model of population structure, of finite length, is analysed with special reference to the variance, and correlation coefficients of gene frequencies. Explicit formulas for these quantities are obtained. The model is also analysed for the genetic variability maintained in the population. In order to check the validity of the analytical results, several numerical computations were carried out using two different methods: iterations and Monte Carlo experiments. The values obtained by these numerical methods agree well with the theoretical values obtained by formulas derived analytically.


Evolution ◽  
1998 ◽  
Vol 52 (5) ◽  
pp. 1423 ◽  
Author(s):  
Michael A. D. Goodisman ◽  
D. DeWayne Shoemaker ◽  
Marjorie A. Asmussen

Sign in / Sign up

Export Citation Format

Share Document