Single Sympathetic Varicosities and Their Receptor Clusters

Author(s):  
Max R. Bennett
Keyword(s):  
2003 ◽  
Vol 773 ◽  
Author(s):  
Xiefan Lin ◽  
Anthony S. W. Ham ◽  
Natalie A. Villani ◽  
Whye-Kei Lye ◽  
Qiyu Huang ◽  
...  

AbstractStudies of selective adhesion of biological molecules provide a path for understanding fundamental cellular properties. A useful technique is to use patterned substrates, where the pattern of interest has the same length scale as the molecular bonding sites of a cell, in the tens of nanometer range. We employ electrochemical methods to grow anodic alumina, which has a naturally ordered pore structure (interpore spacing of 40 to 400 nm) controlled by the anodization potential. We have also developed methods to selectively fill the alumina pores with materials with contrasting properties. Gold, for example, is electrochemically plated into the pores, and the excess material is removed by backsputter etching. The result is a patterned surface with closely separated islands of Au, surrounded by hydrophilic alumina. The pore spacing, which is determined by fabrication parameters, is hypothesized to have a direct effect on the spatial density of adhesion sites. By attaching adhesive molecules to the Au islands, we are able to observe and study cell rolling and adhesion phenomena. Through the measurements it is possible to estimate the length scale of receptor clusters on the cell surface. This information is useful in understanding mechanisms of leukocytes adhesion to endothelial cells as well as the effect of adhesion molecules adaptation on transmission of extracellular forces. The method also has applications in tissue engineering, drug and gene delivery, cell signaling and biocompatibility design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Y. Barefield ◽  
Jordan J. Sell ◽  
Ibrahim Tahtah ◽  
Samuel D. Kearns ◽  
Elizabeth M. McNally ◽  
...  

AbstractMuscular dystrophies are disorders characterized by progressive muscle loss and weakness that are both genotypically and phenotypically heterogenous. Progression of muscle disease arises from impaired regeneration, plasma membrane instability, defective membrane repair, and calcium mishandling. The ferlin protein family, including dysferlin and myoferlin, are calcium-binding, membrane-associated proteins that regulate membrane fusion, trafficking, and tubule formation. Mice lacking dysferlin (Dysf), myoferlin (Myof), and both dysferlin and myoferlin (Fer) on an isogenic inbred 129 background were previously demonstrated that loss of both dysferlin and myoferlin resulted in more severe muscle disease than loss of either gene alone. Furthermore, Fer mice had disordered triad organization with visibly malformed transverse tubules and sarcoplasmic reticulum, suggesting distinct roles of dysferlin and myoferlin. To assess the physiological role of disorganized triads, we now assessed excitation contraction (EC) coupling in these models. We identified differential abnormalities in EC coupling and ryanodine receptor disruption in flexor digitorum brevis myofibers isolated from ferlin mutant mice. We found that loss of dysferlin alone preserved sensitivity for EC coupling and was associated with larger ryanodine receptor clusters compared to wildtype myofibers. Loss of myoferlin alone or together with a loss of dysferlin reduced sensitivity for EC coupling, and produced disorganized and smaller ryanodine receptor cluster size compared to wildtype myofibers. These data reveal impaired EC coupling in Myof and Fer myofibers and slightly potentiated EC coupling in Dysf myofibers. Despite high homology, dysferlin and myoferlin have differential roles in regulating sarcotubular formation and maintenance resulting in unique impairments in calcium handling properties.


2013 ◽  
Vol 4 ◽  
pp. 319-323
Author(s):  
Anna Fidziańska ◽  
Maria Jędrzejowska ◽  
Agnieszka Madej-Pilarczyk ◽  
Jacek Bojakowski

1986 ◽  
Vol 9 ◽  
pp. 125-129 ◽  
Author(s):  
H. Benjamin Peng ◽  
Mu-ming Poo

2008 ◽  
Vol 17 ◽  
pp. S232
Author(s):  
David Crossman ◽  
Christian Soeller ◽  
Peter Ruygrok ◽  
Mark Cannell

Author(s):  
S. Bursztajn ◽  
S. Vincent ◽  
F.M. Brodsky ◽  
F. Benes ◽  
S.A. Morris

Sign in / Sign up

Export Citation Format

Share Document