receptor clusters
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 31)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Marcos S. Cardoso ◽  
Rita F. Santos ◽  
Sarah Almeida ◽  
Mónica Sá ◽  
Begoña Pérez-Cabezas ◽  
...  

Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Erin J. Kelley ◽  
Annalee S. Boyle ◽  
Sandra Zurawski ◽  
Heather L. Mead ◽  
...  

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous ‘Clusters of Expanded TCRs (CETs)’ can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


2021 ◽  
Author(s):  
Carme Nolla‐Colomer ◽  
Sergi Casabella‐Ramon ◽  
Veronica Jimenez‐Sabado ◽  
Alexander Vallmitjana ◽  
Carmen Tarifa ◽  
...  

2021 ◽  
Author(s):  
Thomas M. D. Sheard ◽  
Miriam E. Hurley ◽  
Andrew J Smith ◽  
John Colyer ◽  
Ed White ◽  
...  

Clusters of ryanodine receptor calcium channels (RyRs) form the primary molecular machinery in cardiomyocytes. Various adaptations of super-resolution microscopy have revealed intricate details of the structure, molecular composition and locations of these couplons. However, most optical super-resolution techniques lack the capacity for three-dimensional (3D) visualisation. Enhanced Expansion Microscopy (EExM) offers resolution (in-plane and axially) sufficient to spatially resolve individual proteins within peripheral couplons and within dyads located in the interior. We have combined immunocytochemistry and immunohistochemistry variations of EExM with 3D visualisation to examine the complex topologies, geometries and molecular sub-domains within RyR clusters. We observed that peripheral couplons exhibit variable co-clustering ratios and patterns between RyR and the structural protein, junctophilin-2 (JPH2). Dyads possessed sub-domains of JPH2 which occupied the central regions of the RyR cluster, whilst the poles were typically devoid of JPH2 and broader, and likely specialise in turnover and remodelling of the cluster. In right ventricular myocytes from rats with monocrotaline-induced right ventricular failure, we observed hallmarks of RyR cluster fragmentation accompanied by similar fragmentations of the JPH2 sub-domains. We hypothesise that the frayed morphology of RyRs in close proximity to fragmented JPH2 structural sub-domains may form the primordial foci of RyR mobilisation and dyad remodelling.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1245
Author(s):  
Ivan V. Prikhodko ◽  
Georgy Th. Guria

Nucleation theory has been widely applied for the interpretation of critical phenomena in nonequilibrium systems. Ligand-induced receptor clustering is a critical step of cellular activation. Receptor clusters on the cell surface are treated from the nucleation theory point of view. The authors propose that the redistribution of energy over the degrees of freedom is crucial for forming each new bond in the growing cluster. The expression for a kinetic barrier for new bond formation in a cluster was obtained. The shape of critical receptor clusters seems to be very important for the clustering on the cell surface. The von Neumann entropy of the graph of bonds is used to determine the influence of the cluster shape on the kinetic barrier. Numerical studies were carried out to assess the dependence of the barrier on the size of the cluster. The asymptotic expression, reflecting the conditions necessary for the formation of receptor clusters, was obtained. Several dynamic effects were found. A slight increase of the ligand mass has been shown to significantly accelerate the nucleation of receptor clusters. The possible meaning of the obtained results for medical applications is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Y. Barefield ◽  
Jordan J. Sell ◽  
Ibrahim Tahtah ◽  
Samuel D. Kearns ◽  
Elizabeth M. McNally ◽  
...  

AbstractMuscular dystrophies are disorders characterized by progressive muscle loss and weakness that are both genotypically and phenotypically heterogenous. Progression of muscle disease arises from impaired regeneration, plasma membrane instability, defective membrane repair, and calcium mishandling. The ferlin protein family, including dysferlin and myoferlin, are calcium-binding, membrane-associated proteins that regulate membrane fusion, trafficking, and tubule formation. Mice lacking dysferlin (Dysf), myoferlin (Myof), and both dysferlin and myoferlin (Fer) on an isogenic inbred 129 background were previously demonstrated that loss of both dysferlin and myoferlin resulted in more severe muscle disease than loss of either gene alone. Furthermore, Fer mice had disordered triad organization with visibly malformed transverse tubules and sarcoplasmic reticulum, suggesting distinct roles of dysferlin and myoferlin. To assess the physiological role of disorganized triads, we now assessed excitation contraction (EC) coupling in these models. We identified differential abnormalities in EC coupling and ryanodine receptor disruption in flexor digitorum brevis myofibers isolated from ferlin mutant mice. We found that loss of dysferlin alone preserved sensitivity for EC coupling and was associated with larger ryanodine receptor clusters compared to wildtype myofibers. Loss of myoferlin alone or together with a loss of dysferlin reduced sensitivity for EC coupling, and produced disorganized and smaller ryanodine receptor cluster size compared to wildtype myofibers. These data reveal impaired EC coupling in Myof and Fer myofibers and slightly potentiated EC coupling in Dysf myofibers. Despite high homology, dysferlin and myoferlin have differential roles in regulating sarcotubular formation and maintenance resulting in unique impairments in calcium handling properties.


2021 ◽  
Vol 22 (15) ◽  
pp. 8211
Author(s):  
Timothy G. Strozen ◽  
Jessica C. Sharpe ◽  
Evelyn D. Harris ◽  
Maruti Uppalapati ◽  
Behzad M. Toosi

The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaojie Yu ◽  
Sonya James ◽  
James H. Felce ◽  
Blanka Kellermayer ◽  
David A. Johnston ◽  
...  

AbstractMonoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Sign in / Sign up

Export Citation Format

Share Document