Visual Responses Outside the Classical Receptive Field in Primate Striate Cortex: A Possible Correlate of Perceptual Completion

Author(s):  
Ricardo Gattass ◽  
Mario Fiorani ◽  
Marcello Gonçalves Pereira Rosa ◽  
Maria Carmen Giraldez Pereira Piñon ◽  
Aglai Penna Barbosa de Sousa ◽  
...  
2002 ◽  
Vol 19 (5) ◽  
pp. 583-592 ◽  
Author(s):  
BEN S. WEBB ◽  
CHRIS J. TINSLEY ◽  
NICK E. BARRACLOUGH ◽  
ALEXANDER EASTON ◽  
AMANDA PARKER ◽  
...  

It is well established that the responses of neurons in the lateral geniculate nucleus (LGN) can be modulated by feedback from visual cortex, but it is still unclear how cortico-geniculate afferents regulate the flow of visual information to the cortex in the primate. Here we report the effects, on the gain of LGN neurons, of differentially stimulating the extraclassical receptive field, with feedback from the striate cortex intact or inactivated in the marmoset monkey, Callithrix jacchus. A horizontally oriented grating of optimal size, spatial frequency, and temporal frequency was presented to the classical receptive field. The grating varied in contrast (range: 0–1) from trial to trial, and was presented alone, or surrounded by a grating of the same or orthogonal orientation, contained within either a larger annular field, or flanks oriented either horizontally or vertically. V1 was ablated to inactivate cortico-geniculate feedback. The maximum firing rate of LGN neurons was greater with V1 intact, but was reduced by visually stimulating beyond the classical receptive field. Large horizontal or vertical annular gratings were most effective in reducing the maximum firing rate of LGN neurons. Magnocellular neurons were most susceptible to this inhibition from beyond the classical receptive field. Extraclassical inhibition was less effective with V1 ablated. We conclude that inhibition from beyond the classical receptive field reduces the excitatory influence of V1 in the LGN. The net balance between cortico-geniculate excitation and inhibition from beyond the classical receptive field is one mechanism by which signals relayed from the retina to V1 are controlled.


2000 ◽  
Vol 17 (4) ◽  
pp. 485-494 ◽  
Author(s):  
ANDRZEJ W. PRZYBYSZEWSKI ◽  
JAMES P. GASKA ◽  
WARREN FOOTE ◽  
DANIEL A. POLLEN

Recurrent projections comprise a universal feature of cerebral organization. Here, we show that the corticofugal projections from the striate cortex (V1) to the lateral geniculate nucleus (LGN) robustly and multiplicatively enhance the responses of parvocellular neurons, stimulated by gratings restricted to the classical receptive field and modulated in luminance, by over two-fold in a contrast-independent manner at all but the lowest contrasts. In the equiluminant plane, wherein stimuli are modulated in chromaticity with luminance held constant, such enhancement is strongly contrast dependent. These projections also robustly enhance the responses of magnocellular neurons but contrast independently only at high contrasts. Thus, these results have broad functional significance at both network and neuronal levels by providing the experimental basis and quantitative constraints for a wide range of models on recurrent projections and the control of contrast gain.


Author(s):  
Xiaoke Niu ◽  
Shuman Huang ◽  
Minjie Zhu ◽  
Zhizhong Wang ◽  
Li Shi

Surround modulation is a phenomenon whereby costimulation of the extra-classical receptive field and classical receptive field would modulate the visual responses induced individually by classical receptive field. However, there lacks systematic study about surround modulation properties existing in avian optic tectum. In this study, neuronal activities are recorded from pigeon optic tectum, and the responses to moving and flashed squares and bars of different sizes are compared. The statistical results showed that most tectal neurons presented surround suppression as stimuli size grew larger both in moving and flashed paradigms, and the suppression degree induced by larger flashed square was comparable with that by moving one when it crossed near the cell’s RF center, which corresponds to fully surrounding condition. The suppression degree grew weaker when the stimuli move across the RF border, which corresponds to partially surrounding condition. Meanwhile, the fully surround suppression induced by flashed square was also more intense than partially surrounded by flashed bars. The results provide new insight for understanding the spatial arrangement of lateral inhibitions from feedback or feedforward streams, which would help to make clear the generation mechanism of surround modulation found in avian optic tectum.


NeuroImage ◽  
2007 ◽  
Vol 34 (3) ◽  
pp. 1199-1208 ◽  
Author(s):  
L.M. Harrison ◽  
K.E. Stephan ◽  
G. Rees ◽  
K.J. Friston

Author(s):  
Xiaoke Niu ◽  
Shuman Huang ◽  
Minjie Zhu ◽  
Zhizhong Wang ◽  
Li Shi

Surround modulation is a phenomenon whereby costimulation of the extra-classical receptive field and classical receptive field would modulate the visual responses induced individually by classical receptive field. However, there lacks systematic study about surround modulation properties existing in avian optic tectum. In this study, neuronal activities are recorded from pigeon optic tectum, and the responses to moving and flashed squares and bars of different sizes are compared. The statistical results showed that most tectal neurons presented surround suppression as stimuli size grew larger both in moving and flashed paradigms, and the suppression degree induced by larger flashed square was comparable with that by moving one when it crossed near the cell’s RF center, which corresponds to fully surrounding condition. The suppression degree grew weaker when the stimuli move across the RF border, which corresponds to partially surrounding condition. Meanwhile, the fully surround suppression induced by flashed square was also more intense than partially surrounded by flashed bars. The results provide new insight for understanding the spatial arrangement of lateral inhibitions from feedback or feedforward streams, which would help to make clear the generation mechanism of surround modulation found in avian optic tectum.


2000 ◽  
Vol 17 (3) ◽  
pp. 369-379 ◽  
Author(s):  
GARY A. WALKER ◽  
IZUMI OHZAWA ◽  
RALPH D. FREEMAN

The important visual stimulus parameters for a given cell are defined by the classical receptive field (CRF). However, cells are also influenced by visual stimuli presented in areas surrounding the CRF. The experiments described here were conducted to determine the incidence and nature of CRF surround influences in the primary visual cortex. From extracellular recordings in the cat's striate cortex, we find that for over half of the cells investigated (56%, 153/271), the effect of stimulation in the surround of the CRF is to suppress the neuron's activity by at least 10% compared to the response to a grating presented within the CRF alone. For the remainder of the cells, the interactions were minimal and a few were of a facilitatory nature. In this paper, we focus on the suppressive interactions. Simple and complex cell types exhibit equal incidences of surround suppression. Suppression is observed for cells in all layers, and its degree is strongly correlated between the two eyes for binocular neurons. These results show that surround suppression is a prevalent form of inhibition and may play an important role in visual processing.


1976 ◽  
Vol 39 (4) ◽  
pp. 766-772 ◽  
Author(s):  
R. H. Wurtz ◽  
C. W. Mohler

1. We have studied the visual enhancement effect in two areas of the cerebral cortex of monkeys. The response of the cells to a visual stimulus was determined both when the monkey used the visual stimulus as the target for a saccadic eye movement and when he did not. 2. In striate cortex cells with nonoriented, simple, complex, and hypercomplex receptive-field types were studied. Clear enhancement of the response to the appropriate visual stimulus was seldom seen when the monkey used the stimulus as a target for a saccade. In addition, any enhancement effect seen was nonselective; it occurred whether the monkey made a saccade to the receptive-field stimulus or some other stimulus at a point distant from the receptive field. The enhancement also occurred whether the monkey made a saccade to the stimulus or just released the bar when the stimulus dimmed. 3. This nonselective enhancement in striate cortex is in striking contrast to the selective enhancement of the visual response seen in the superior colliculus. The different characteristics of the enhancement in striate cortex and the observation of enhancement in the colliculus following ablation of striate cortex suggest that this cortical area is an unlikely source of the collicular enhancement. 4. These observations reinforce the distinction between striate cortex and superior colliculus. Striate cortex is an excellent analyzer of stimulus characteristics but a poor evaluator of stimulus significance. The superior colliculus is an excellent evaluator but a poor analyzer. 5. The area of frontal eye fields in which cells have clear visual responses has been better localized. Enhancement of the visual response of these cells also occurs and, at least for some cells, the response enhancement is selective. The response enhancement, like the visual properties of these frontal eye field cells, appears to be more closely related to the properties of superior colliculus cells than to striate cortex cells.


1986 ◽  
Vol 55 (5) ◽  
pp. 1057-1075 ◽  
Author(s):  
C. J. Bruce ◽  
R. Desimone ◽  
C. G. Gross

Although the tectofugal system projects to the primate cerebral cortex by way of the pulvinar, previous studies have failed to find any physiological evidence that the superior colliculus influences visual activity in the cortex. We studied the relative contributions of the tectofugal and geniculostriate systems to the visual properties of neurons in the superior temporal polysensory area (STP) by comparing the effects of unilateral removal of striate cortex, the superior colliculus, or of both structures. In the intact monkey, STP neurons have large, bilateral receptive fields. Complete unilateral removal of striate cortex did not eliminate visual responses of STP neurons in the contralateral visual hemifield; rather, nearly half the cells still responded to visual stimuli in the hemifield contralateral to the lesion. Thus the visual properties of STP neurons are not completely dependent on the geniculostriate system. Unilateral striate lesions did affect the response properties of STP neurons in three ways. Whereas most STP neurons in the intact monkey respond similarly to stimuli in the two visual hemifields, responses to stimuli in the hemifield contralateral to the striate lesion were usually weaker than responses in the ipsilateral hemifield. Whereas the responses of many STP neurons in the intact monkey were selective for the direction of stimulus motion or for stimulus form, responses in the hemifield contralateral to the striate lesion were not selective for either motion or form. Whereas the median receptive field in the intact monkey extended 80 degrees into the contralateral visual field, the receptive fields of cells with responses in the contralateral field that survived the striate lesions had a median border that extended only 50 degrees into the contralateral visual field. Removal of both striate cortex and the superior colliculus in the same hemisphere abolished the responses of STP neurons to visual stimuli in the hemifield contralateral to the combined lesion. Nearly 80% of the cells still responded to visual stimuli in the hemifield ipsilateral to the lesion. Unilateral removal of the superior colliculus alone had only small effects on visual responses in STP. Receptive-field size and visual response strength were slightly reduced in the hemifield contralateral to the collicular lesion. As in the intact monkey, selectivity for stimulus motion or form were similar in the two visual hemifields. We conclude that both striate cortex and the superior colliculus contribute to the visual responses of STP neurons. Striate cortex is crucial for the movement and stimulus specificity of neurons in STP.(ABSTRACT TRUNCATED AT 400 WORDS)


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


Sign in / Sign up

Export Citation Format

Share Document