scholarly journals Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

Author(s):  
M. A. Weber ◽  
Y. Fan ◽  
M. S. Miesch
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuhong Fan

AbstractIt has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.


2001 ◽  
Vol 203 ◽  
pp. 273-275
Author(s):  
Y. Fan

Solar active regions are believed to correspond to the topmost portions of Ω-shaped arching flux tubes that have risen buoyantly from the base of the solar convection zone, where strong toroidal magnetic fields are being generated by the dynamo process. The development of such emerging Ω-loops is likely a result of the buoyant instability associated with the submerged toroidal magnetic field. Using an anelastic MHD code, we simulate the formation of buoyant, arching flux tube structures as a result of the non-linear growth of the undular instability of a neutrally buoyant layer of horizontal, unidirectional magnetic field at the base of the solar convection zone.


2010 ◽  
Vol 6 (S271) ◽  
pp. 288-296
Author(s):  
Laurène Jouve ◽  
Michael R. E. Proctor ◽  
Geoffroy Lesur

AbstractWe present the effects of introducing results of 3D MHD simulations of buoyant magnetic fields in the solar convection zone in 2D mean-field Babcock-Leighton models. In particular, we take into account the time delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. We find that the delays produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. The study of a reduced model reveals that aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. We also discuss the memory of such systems and the conclusions which may be drawn concerning the actual solar cycle variability.


1998 ◽  
Vol 502 (1) ◽  
pp. 481-492 ◽  
Author(s):  
P. Caligari ◽  
M. Schussler ◽  
F. Moreno‐Insertis

1998 ◽  
Vol 505 (1) ◽  
pp. L59-L63 ◽  
Author(s):  
Y. Fan ◽  
E. G. Zweibel ◽  
M. G. Linton ◽  
G. H. Fisher

1993 ◽  
Vol 157 ◽  
pp. 27-39
Author(s):  
M. Schüssler

The structure of solar surface magnetic fields, the way they erupt from the the convection zone below, and processes like flux expulsion and fragmentation instabilities support the view that magnetic flux in a stellar convection zone is in an intermittent, fragmented state which can be described as an ensemble of magnetic flux tubes. Depending on size and field strength, the dynamics of magnetic flux tubes can strongly differ from the behavior of a passive, diffuse field which is often assumed in conventional mean-field dynamo theory. Observed properties of active regions like emergence in low latitudes, Hale's polarity rules, tilt angles, and the process of sunspot formation from smaller fragments, together with theoretical considerations of the dynamics of buoyant flux tubes indicate that the magnetic structures which erupt in an emerging active region are not passive to convection and originate in a source region (presumably an overshoot layer below the convection zone proper) with a field strength of at least 105 G, far beyond the equipartition field strength with respect to convective flows. We discuss the consequences of such a situation for dynamo theory of the solar cycle and consider the possibility of dynamo models on the basis of flux tubes. A simple, illustrative example of a flux tube dynamo is presented.


Sign in / Sign up

Export Citation Format

Share Document