dynamo process
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 11 (19) ◽  
pp. 9150
Author(s):  
Yingyan Wu ◽  
Libo Liu ◽  
Zhipeng Ren

Equinoctial asymmetry of the range of the solar quiet day variation (Sq) of the horizontal geomagnetic field (H) has been found in some low latitude geomagnetic observatories. This study conducted an investigation of its latitude distribution and the relationship with the solar cycle by using the H field measurements from six observatories along the 120° E meridian chain in the years 1957–2013. Results illustrate a significant equinoctial asymmetry of the SqH range at all observatories. Three main features were identified. First, the signature of the equinoctial asymmetry of the SqH range is opposite for observatories located at the northern and southern sides of the Northern Hemisphere Sq current focus. It shows larger values around spring than autumn equinox at southern observatories, and the converse is seen at northern observatories. Second, the asymmetry increases with the distance from the Sq current focus, suggesting the stronger sensitivity of the distant observatories than observatories around the focus. The result of linear fitting presents a positive dependence of the asymmetry coefficient on geographic latitude, with a reversal of the asymmetry occurring at 28.1° N near the focus of the average Sq current. Third, there is no obvious dependence of the equinoctial asymmetry of the SqH range on solar activity, suggesting a possible cause from some regional factors related to the ionospheric dynamo process.



Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 259
Author(s):  
Niccolò Tomei ◽  
Luca Del Zanna ◽  
Matteo Bugli ◽  
Niccolò Bucciantini

The remarkable results by the Event Horizon Telescope collaboration concerning the emission from M87* and, more recently, its polarization properties, require an increasingly accurate modeling of the plasma flows around the accreting black hole. Radiatively inefficient sources such as M87* and Sgr A* are typically modeled with the SANE (standard and normal evolution) paradigm, if the accretion dynamics is smooth, or with the MAD (magnetically arrested disk) paradigm, if the black hole’s magnetosphere reacts by halting the accretion sporadically, resulting in a highly dynamical process. While the recent polarization studies seem to favor MAD models, this may not be true for all sources, and SANE accretion surely still deserves attention. In this work, we investigate the possibility of reaching the typical degree of magnetization and other accretion properties expected for SANE disks by resorting to the mean-field dynamo process in axisymmetric GRMHD simulations, which are supposed to mimic the amplifying action of an unresolved magnetorotational instability-driven turbulence. We show that it is possible to reproduce the main diagnostics present in the literature by starting from very unfavorable initial configurations, such as a purely toroidal magnetic field with negligible magnetization.



2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Paul Charbonneau

AbstractThis paper reviews recent advances and current debates in modeling the solar cycle as a hydromagnetic dynamo process. Emphasis is placed on (relatively) simple dynamo models that are nonetheless detailed enough to be comparable to solar cycle observations. After a brief overview of the dynamo problem and of key observational constraints, I begin by reviewing the various magnetic field regeneration mechanisms that have been proposed in the solar context. I move on to a presentation and critical discussion of extant solar cycle models based on these mechanisms, followed by a discussion of recent magnetohydrodynamical simulations of solar convection generating solar-like large-scale magnetic cycles. I then turn to the origin and consequences of fluctuations in these models and simulations, including amplitude and parity modulation, chaotic behavior, and intermittency. The paper concludes with a discussion of our current state of ignorance regarding various key questions relating to the explanatory framework offered by dynamo models of the solar cycle.



2020 ◽  
Author(s):  
Yuanjie Li ◽  
Qingsong Liu

<p>The knowledge of the geomagnetic field intensity during the Cretaceous Normal Superchron, a long term of forty million years without polarity reversals, may have a large impact on our understanding of the dynamo process occurring in Earth’s outer core. How, it is difficult to get the geomagnetic field behavior during the Cretaceous Normal Superchron resulting from the inadequate sampling or data of variable qualities from igneous rocks and sedimentary. Here we examine 20 magnetic anomaly profiles across the Cretaceous magnetic quiet zone of the Central Atlantic Ocean in the African flank extracted from the EMAG2v3, and calculate a synthetical magnetization profile based on the forward modeling method. We suggest that this profile records the high strength of geomagnetic field at the beginning of ~30 million years and low signal during the late period, which could be correlated with the low-resolution relative paleointensity record from the sediment samples at the Falkland Plateau, and which also could be found the VDMs/VADMs averaged by a 7-Ma sliding window from the absolute intensity records mostly from the MagIC database. Our results support the hypothesis that the distribution of heat flow along the core-mantle boundary is positively correlative to the intensity of the dipole field.</p>



2019 ◽  
Vol 492 (1) ◽  
pp. 1523-1529 ◽  
Author(s):  
Diogo Belloni ◽  
Matthias R Schreiber

ABSTRACT Understanding the origin of the magnetic fields in white dwarfs (WDs) has been a puzzle for decades. A scenario that has gained considerable attention in the past years assumes that such magnetic fields are generated through a dynamo process during common-envelope evolution. We performed binary population models using an up-to-date version of the bse code to confront the predictions of this model with observational results. We found that this hypothesis can explain only the observed distribution of WD magnetic fields in polars and pre-polars and the low-temperature WDs in pre-polars if it is re-scaled to fit the observational data. Furthermore, in its present version, the model fails to explain the absence of young, close detached WD+M-dwarf binaries harbouring hot magnetic WDs and predicts that the overwhelming majority of WDs in close binaries should be strongly magnetic, which is also in serious conflict with the observations. We conclude that either the common-envelope dynamo scenario needs to be substantially revised or a different mechanism is responsible for the generation of strong WD magnetic fields in close binaries.



2019 ◽  
Vol 625 ◽  
pp. A28 ◽  
Author(s):  
R. H. Cameron ◽  
M. Schüssler

Power spectra of solar activity based on historical records of sunspot numbers and on cosmogenic isotopes show peaks with enhanced power apart from the dominant 11-year solar cycle, such as the 90-year Gleissberg cycle or the 210-year de Vries cycle. In a previous paper we have shown that the overall shape of the power spectrum is well represented by the results of the generic normal form model for a noisy and weakly nonlinear limit cycle, with parameters all determined by observations. Using this model as a null case, we show here that all local peaks with enhanced power, apart from the 11-year band, are consistent with realization noise. Even a 3σ peak is expected to occur with a probability of about 0.25 at least once among the 216 period bins resolved by the cosmogenic isotope data. This casts doubt upon interpretations of such peaks in terms of intrinsic periodicities of the solar dynamo process.



2018 ◽  
Vol 611 ◽  
pp. A92 ◽  
Author(s):  
Th. Roudier ◽  
M. Švanda ◽  
J. Ballot ◽  
J. M. Malherbe ◽  
M. Rieutord

Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s−1 and few m s−1, respectively. These flows also have a cycle-related components, namely the torsional oscillations.Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time–distance helioseismology.Methods. Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied.Results. The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude.Conclusions. We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.



2018 ◽  
Vol 13 (S340) ◽  
pp. 269-274 ◽  
Author(s):  
Jie Jiang

AbstractThe kinematic modeling of the solar convection zone remains the workhorse of the solar dynamo to understand the solar cycle. During the past several years, the major progress in understanding the solar cycle using kinematic models is as follows. (1). The Babcock-Leighton (BL) mechanism was confirmed to be at the essence of the solar cycle. (2). The scatter of sunspot tilt angles is identified as a major cause of solar cycle irregularities. (3). The important roles of the magnetic pumping in the dynamo process are recognized. (4). Some 3D kinematic BL type dynamo models have been developed. As a key part of the solar dynamo loop, the surface observable part of the BL mechanism makes the physics-based solar cycle prediction feasible. Including the effects of the tilt scatter on the polar field generation, the possible strength of the subsequent cycle can be predicted when a cycle starts for a few years.



2018 ◽  
Vol 13 (S340) ◽  
pp. 289-292
Author(s):  
Arnab Rai Choudhuri

AbstractThe polar magnetic field of the Sun is a manifestation of certain aspects of the dynamo process and is a good precursor for predicting a sunspot cycle before its onset. Although actual synoptic measurements of this field exist only from the mid-1970s, it has now been possible to determine its evolution from the beginning of the twentieth century with the help of various proxies. The recently developed 3D kinematic dynamo model can study the build-up of the Sun’s polar magnetic field more realistically than the earlier surface flux transport model.



2016 ◽  
Vol 7 (2) ◽  
pp. 73-77 ◽  
Author(s):  
Mioara Mandea ◽  
Jean-Louis Le Mouël

Abstract. The main part of the geomagnetic field – produced by a dynamo process in the Earth's outer core – changes its direction and strength in time, over timescales from months to centuries, even millennia. Its temporal variations, known as secular variation and secular acceleration, are crucial ingredients for understanding the physics of the deep Earth. Very long series of measurements therefore play an important role. Here, we provide an updated series of geomagnetic declination in Paris, shortly after a very special occasion: its value has reached zero after some 350 years of westerly values. Indeed, during October and November 2013, the declination at the Chambon la Forêt geomagnetic observatory changed from westerly to easterly values, the agonic line then passing through this place. We take this occasion to emphasize the importance of long series of continuous measurements.



Sign in / Sign up

Export Citation Format

Share Document