Analysis of Diterpenes and Triterpenes from Plant Foliage and Roots

Author(s):  
Qiang Wang ◽  
Reza Sohrabi ◽  
Dorothea Tholl
Keyword(s):  
2003 ◽  
Vol 56 ◽  
pp. 61-65
Author(s):  
J.A. Zabkiewicz ◽  
W.A. Forster

Pesticide uptake into plants is typically reported as percentage uptake of the amount applied but in studies of the mechanism of cuticular penetration this approach has not been helpful It can be shown that relating percentage uptake to initial dose of bentazone applied to Vicia faba foliage cannot provide pertinent relationships that can be used to explain cuticular uptake mechanisms However applying the principles of Ficks Law and using mass or molar quantities does provide excellent linear relationships between mass uptake and initial dose applied Universal equations can be derived that relate dose uptake to initial dose applied onto plant leaves


Crop Science ◽  
1985 ◽  
Vol 25 (2) ◽  
pp. 359 ◽  
Author(s):  
R. T. Weiland ◽  
T. E. Omholt

2021 ◽  
Author(s):  
Noa Ligot ◽  
Benoît Pereira ◽  
Patrick Bogaert ◽  
Guillaume Lobet ◽  
Pierre Delmelle

<p>Volcanic ashfall negatively affects crops, causing major economic losses and jeopardising the livelihood of farmers in developing countries where agriculture is at volcanic risk. Ash on plant foliage reduces the amount of incident light, thereby limiting photosynthesis and plant yield. An excessive ash load may also result in mechanical plant damages, such as defoliation and breakage of the stem and twigs. Characterising crop vulnerability to ashfall is critical to conduct a comprehensive volcanic risk analysis. This is normally done by describing the relationship between the ash deposit thickness and the corresponding reduction in crop yield, i.e. a fragility function. However, ash depth measured on the ground surface is a crude proxy of ash retention on plant foliage as this metrics neglects other factors, such as ash particle size, leaf pubescence and condition of humidity at leaf surfaces, which are likely to influence the amount of ash that stays on leaves.</p><p>Here we report the results of greenhouse experiments in which we measured the percentage of leaf surface area covered by ash particles for one hairy leaf plant (tomato, Solanum lycopersicum L.) and one hairless leaf plant (chilli pepper, Capsicum annuum L.) exposed to simulated ashfalls. We tested six particle size ranges (≤ 90, 90-125, 125-250, 250-500, 500-1000, 1000-2000 µm) and two conditions of humidity at leaf surfaces, i.e. dry and wet. Each treatment consisted of 15 replicates. The tomato and chilli pepper plants exposed to ash were at the seven- and eight-leaf stage, respectively. An ash load of ~570 g m<sup>-2 </sup>was applied to each plant using a homemade ashfall simulator. We estimated the leaf surface area covered by ash from pictures taken before and immediately after the simulated ashfall. The ImageJ software was used for image processing and analysis.</p><p>Our results show that leaf coverage by ash increases with decreasing particle size. Exposure of tomato and chilli pepper to ash ≤ 90 μm always led to ~90% coverage of the leaf surface area. For coarser particles sizes (i.e. between 125 and 500 µm) and dry condition at leaf surfaces, a significantly higher percentage (on average 29 and 16%) of the leaf surface area was covered by ash in the case of tomato compared to chilli pepper, highlighting the influence of leaf pubescence on ash retention. In addition, for particle sizes between 90 and 500 µm, wetting of the leaf surfaces prior to ashfall enhanced the ash cover by 19 ± 5% and 34 ± 11% for tomato and chilli pepper, respectively.</p><p>These findings highlight that ash deposit thickness alone cannot describe the hazard intensity accurately. A thin deposit of fine ash (≤ 90 µm) will likely cover the entire leaf surface area, thereby eliciting a disproportionate effect on plant foliage compared to a thicker but coarser deposit. Similarly, for a same ash depth, leaf pubescence and humid conditions at the leaf surfaces will enhance ash retention, thereby increasing the likelihood of damage. Our study will contribute to improve the reliability of crop fragility functions used in volcanic risk assessment.</p>


1979 ◽  
Vol 29 (5) ◽  
pp. 520-525 ◽  
Author(s):  
S.N. Linzon ◽  
P.J. Temple ◽  
R.G. Pearson
Keyword(s):  

2019 ◽  
Vol 116 (5) ◽  
pp. 1669-1678 ◽  
Author(s):  
Jing Zhang ◽  
Qian Cong ◽  
Emily A. Rex ◽  
Winnie Hallwachs ◽  
Daniel H. Janzen ◽  
...  

Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.


Fractals ◽  
2006 ◽  
Vol 14 (03) ◽  
pp. 149-163 ◽  
Author(s):  
FRÉDÉRIC BOUDON ◽  
CHRISTOPHE GODIN ◽  
CHRISTOPHE PRADAL ◽  
OLIVIER PUECH ◽  
HERVÉ SINOQUET

In this paper, we present a method to estimate the fractal dimension of plant foliage in three dimensions (3D). This method is derived from the two-surface method introduced in the 90s to estimate the fractal dimension of tree species from field measurements on collections of trees. Here we adapted the method to individual plants. The multiscale topology and geometry of the plant must first be digitized in 3D. Then leafy branching systems of different sizes are constructed from the plant database, using the topological information. 3D convex envelops are then computed for each leafy branching system. The fractal dimension of the plant is finally estimated by comparing the total leaf area and the convex envelop area of these leafy modules. The method was assessed on a set of four peach trees entirely digitized at shoot scale. Results show that the peach trees have a marked self-similar foliage with fractal dimension close to 2.4.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 253 ◽  
Author(s):  
Hongtao Zhong ◽  
Carol Smith ◽  
Brett Robinson ◽  
Young-Nam Kim ◽  
Nicholas Dickinson

Laboratory incubation studies were used to investigate whether and how variability of different plant litters modifies the mobility of nitrogen in soil. Fallen plant foliage from native New Zealand plants of diverse fibre and nutrient content were selected, with C:N ratios ranging from 14 to 102. Different litters provided substantially different inputs of macro- and micronutrients to soil that affected the mobility of N. Both fibre content and C:N ratios were influential. A primary effect of litter addition to soil was modification of pH, largely attributable to calcium enrichment. Nitrate in soil was reduced by up to 85% following litter amendments. Incorporation of five native plant litters into soil significantly suppressed emissions of nitrous oxide. We interpret these findings in the context of plant residues from naturalistic planting on the borders of farm paddocks that may play a role in tightening the N cycle and restricting spillover of nitrogen pollutants to the wider environment.


2009 ◽  
Vol 6 (7) ◽  
pp. 1311-1324 ◽  
Author(s):  
D. R. Bowling ◽  
J. B. Miller ◽  
M. E. Rhodes ◽  
S. P. Burns ◽  
R. K. Monson ◽  
...  

Abstract. Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV) irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH4 was high, with observed values in the range 1790 to 1910 nmol mol−1. High CH4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH4 sink. Using scalar similarity with CO2, the magnitude of the summer soil CH4 sink was estimated at ~1.7 mg CH4 m−2 h−1, which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m−2. Gradients and means of CO2 within the canopy under daytime conditions showed net uptake of CO2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season.


Sign in / Sign up

Export Citation Format

Share Document