Immunohistochemical Detection of Oxidized Forms of 5-Methylcytosine in Embryonic and Adult Brain Tissue

Author(s):  
Abdulkadir Abakir ◽  
Lee M. Wheldon ◽  
Alexey Ruzov
1992 ◽  
Vol 1 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Michael Hall ◽  
Yun Wang ◽  
Ann-Charlotte Granholm ◽  
James O. Stevens ◽  
David Young ◽  
...  

Interest in the use of neural tissue transplantation for the study of CNS development and maturation and the potential use of this technique for the treatment of certain degenerative CNS disorders has led to our use of transplantation of neural tissue across species lines. Prior to extensive transplantation studies using athymic rats as recipients, we wished to evaluate the currently available strains of athymic rat for their suitability as host animals for xenografts of neural tissue. Fetal cerebellar and cerebral cortex tissue from rabbit brain of gestational age 20-25 days was dissected and transplanted to the anterior chamber of the eye of Harlan Wisconsin, Fisher 344 Jnu, or NCI-Harlan athymic nude rat strains. The brain tissue grafts were allowed to mature for 3 mo during which time the size and vascularity of each graft was monitored through the cornea of anesthetized hosts. In each group all of the transplants survived and grew to varying extents in the anterior chamber of the eye. Following the growth study in vivo extracellular recording of single neuronal activity was performed. Spontaneous neural activity was found in most transplants in all three groups with no difference in the viability or discharge rates of neurons between the groups. Illumination of the ipsilateral eye increased the firing rate of neurons in all three groups, suggesting excitatory cholinergic innervation of the grafted neurons from the host parasympathetic iris ground plexus. Antibodies directed against neurofilament protein, glial fibrillary acidic protein, synapsin, and tyrosine hydroxylase were used to characterize the transplants immunocytochemically and revealed no differences between the grafts in the three groups of recipients. All transplants contained significant numbers of glial and neuronal elements with the distribution resembling that in adult brain tissue. Some of the transplants contained a sparse innervation of tyrosine hydroxylase–positive fibers from the sympathetic plexus of the host iris. Furthermore, synapsin-immunoreactivity suggested that synaptogenesis had taken place within the grafts. Histological examination of the grafts revealed that 67% of the grafts had been infiltrated, to varying extents, by lymphocytes which led to areas of cell lysis and necrosis. All host animals had populations of T-cell receptor positive cells, most of which also expressed the T-cell surface antigens CD4 and CD8. However, no transplants were overtly rejected over the 15 wk period of study. Our investigation demonstrates that all of the athymic strains used in this study are able to mount an immune response against grafted fetal tissue, despite the absence of rejection, and that none of these strains is superior to the others with respect to suitability as a host for the long-term study of fetal CNS xenografts in oculo.


2003 ◽  
Vol 30 (1) ◽  
pp. 39-45 ◽  
Author(s):  
M. Kyläniemi ◽  
M. Koskinen ◽  
P. Karhunen ◽  
I. Rantala ◽  
J. Peltola ◽  
...  

Science ◽  
1943 ◽  
Vol 97 (2514) ◽  
pp. 226-227 ◽  
Author(s):  
A. R. TAYLOR ◽  
D. G. SHARP ◽  
B. WOODHALL
Keyword(s):  

1977 ◽  
Vol 74 (3) ◽  
pp. 425-429 ◽  
Author(s):  
J. S. JENKINS ◽  
C. J. HALL

SUMMARY The metabolism of [14C]testosterone in vitro by various areas of the human foetal brain has been studied and compared with that of adult brain. The predominant metabolites were 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol, and also androstenedione, and all areas of the foetal brain showed similar activity. In the foetal pituitary gland, the activity of 5α-reductase was less prominent than that of 17β-hydroxysteroid-dehydrogenase. Small quantities of oestradiol-17β were produced from testosterone by the hypothalamus, temporal lobe and amygdala only, and no aromatization could be detected in the pituitary gland. 5α-Reductase activity was much lower in adult brain tissues and no oestradiol was identified in adult temporal lobe tissue.


Meat Science ◽  
2002 ◽  
Vol 61 (1) ◽  
pp. 67-72 ◽  
Author(s):  
M.H.G Tersteeg ◽  
P.A Koolmees ◽  
F van Knapen

1984 ◽  
Vol 219 (1) ◽  
pp. 125-130 ◽  
Author(s):  
L M Roeder ◽  
J T Tildon ◽  
J H Stevenson

The rates of conversion into 14CO2 of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine were measured in the presence and absence of unlabelled alternative oxidizable substrates in whole homogenates from the brains of young and adult rats. The addition of unlabelled glutamine resulted in decreased 14CO2 production from [6-14C]glucose in brain homogenates from both young and adult rats. In contrast, glucose had no effect on [U-14C]glutamine oxidation. In suckling animals, both 3-hydroxybutyrate and acetoacetate decreased the rate of oxidation of [6-14C]glucose, but in adults only 3-hydroxybutyrate had an effect, and to a lesser degree. The addition of unlabelled glucose markedly enhanced the rates of oxidation of both ketone bodies in adult brain tissue and had little or no effect in the young. The rate of production of 14CO2 from [U-14C]glutamine was increased by the addition of unlabelled ketone bodies in brain homogenates from young, but not from adult rats. In the converse situation, unlabelled glutamine added to 14C-labelled ketone bodies diminished 14CO2 production in young rats, but had no effect in adult animals. These results revealed a complex age-dependent pattern of interaction in which certain substrates apparently competed with each other, whereas an enhanced rate of 14CO2 production was found with others.


1986 ◽  
Vol 374 (2) ◽  
pp. 244-248 ◽  
Author(s):  
Avital Schurr ◽  
Kenneth H. Reid ◽  
Michael T. Tseng ◽  
Catherine West ◽  
Benjamin M. Rigor
Keyword(s):  

1975 ◽  
Vol 152 (3) ◽  
pp. 469-475 ◽  
Author(s):  
G L Reijnierse ◽  
H Veldstra ◽  
C J Van den Berg

The subcellular localizations of γ-aminobutyrate transaminase (EC 2.6.1.19) and glutamate dehydrogenase (EC 1.4.1.2) in brain tissue of adult rats were compared with each other and with those of NAD+-isocitrate dehydrogenase (EC 1.1.41) and monoamine oxidase (EC 1.4.3.4; kynuramine as substrate). Crude mitochondrial fractions from brain tissue were centrifuged in continuous sucrose density gradients. γ-Aminobutyrate transaminase and glutamate dehydrogenase were always found at a higher density than NAD+-isocitrate dehydrogenase and monoamine oxidase. When centrifuged for 1 h at 53 000gav., there was a slight difference between the distribution profiles of glutamate dehydrogenase and γ-aminobutyrate transaminase. This difference was larger when the centrifugation time was only 15 min. It is concluded that there are subpopulations of brain mitochondria with differing proportions of γ-aminobutyrate transaminase and glutamate dehydrogenase. The results are discussed in relation to evidence obtained with labelled precursors in vivo that there are at least two small glutamate compartments in adult brain.


2019 ◽  
Author(s):  
Disha Sood ◽  
Dana M. Cairns ◽  
Jayanth M. Dabbi ◽  
Charu Ramakrishnan ◽  
Karl Deisseroth ◽  
...  

AbstractBrain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and astrocytes. Particularly, fetal brain tissue-derived ECM supported long-term maintenance of differentiated neurons, demonstrated by morphology, gene expression and secretome profiling. Astrocytes were evident within the second month of differentiation, and reactive astrogliosis was inhibited in brain ECM-enriched cultures when compared to unsupplemented cultures. Functional maturation of the differentiated hiNSCs within fetal ECM-enriched cultures was confirmed by calcium signaling and unsupervised cluster analysis. Additionally, the study identified native biochemical cues in decellularized ECM with notable comparisons between fetal and adult brain-derived ECMs. The development of novel brain-specific biomaterials for generating mature in vitro brain models provides an important path forward for interrogation of neuron-glia interactions.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
David B. MacManus ◽  
Baptiste Pierrat ◽  
Jeremiah G. Murphy ◽  
Michael D. Gilchrist

Sign in / Sign up

Export Citation Format

Share Document