ketone bodies
Recently Published Documents


TOTAL DOCUMENTS

1378
(FIVE YEARS 343)

H-INDEX

82
(FIVE YEARS 10)

2022 ◽  
Vol 8 ◽  
Author(s):  
Matthieu Lilamand ◽  
François Mouton-Liger ◽  
Emmanuelle Di Valentin ◽  
Marta Sànchez Ortiz ◽  
Claire Paquet

Alzheimer's disease (AD) is the most frequent age-related neurodegenerative disorder, with no curative treatment available so far. Alongside the brain deposition of β-amyloid peptide and hyperphosphorylated tau, neuroinflammation triggered by the innate immune response in the central nervous system, plays a central role in the pathogenesis of AD. Glucose usually represents the main fuel for the brain. Glucose metabolism has been related to neuroinflammation, but also with AD lesions. Hyperglycemia promotes oxidative stress and neurodegeneration. Insulinoresistance (e.g., in type 2 diabetes) or low IGF-1 levels are associated with increased β-amyloid production. However, in the absence of glucose, the brain may use another fuel: ketone bodies (KB) produced by oxidation of fatty acids. Over the last decade, ketogenic interventions i.e., ketogenic diets (KD) with very low carbohydrate intake or ketogenic supplementation (KS) based on medium-chain triglycerides (MCT) consumption, have been studied in AD animal models, as well as in AD patients. These interventional studies reported interesting clinical improvements in animals and decrease in neuroinflammation, β-amyloid and tau accumulation. In clinical studies, KS and KD were associated with better cognition, but also improved brain metabolism and AD biomarkers. This review summarizes the available evidence regarding KS/KD as therapeutic options for individuals with AD. We also discuss the current issues and potential adverse effects associated with these nutritional interventions. Finally, we propose an overview of ongoing and future registered trials in this promising field.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Huiyuan Zhu ◽  
Dexi Bi ◽  
Youhua Zhang ◽  
Cheng Kong ◽  
Jiahao Du ◽  
...  

AbstractThe ketogenic diet (KD) is a high-fat, adequate-protein, and very-low-carbohydrate diet regimen that mimics the metabolism of the fasting state to induce the production of ketone bodies. The KD has long been established as a remarkably successful dietary approach for the treatment of intractable epilepsy and has increasingly garnered research attention rapidly in the past decade, subject to emerging evidence of the promising therapeutic potential of the KD for various diseases, besides epilepsy, from obesity to malignancies. In this review, we summarize the experimental and/or clinical evidence of the efficacy and safety of the KD in different diseases, and discuss the possible mechanisms of action based on recent advances in understanding the influence of the KD at the cellular and molecular levels. We emphasize that the KD may function through multiple mechanisms, which remain to be further elucidated. The challenges and future directions for the clinical implementation of the KD in the treatment of a spectrum of diseases have been discussed. We suggest that, with encouraging evidence of therapeutic effects and increasing insights into the mechanisms of action, randomized controlled trials should be conducted to elucidate a foundation for the clinical use of the KD.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Masako Fujiwara ◽  
Itiro Ando ◽  
You Shishido ◽  
Yutaka Imai ◽  
Hiroyuki Terawaki

Abstract Background Hemodialysis (HD) is a protein catabolic event. However, the amino acid (AA) kinetics during HD sessions involved in protein breakdown have not been well investigated in patients with and without diabetes mellitus (DM). Case presentation Three patients (two patients with DM and one patient without DM) underwent fasting HD. Plasma levels of branched-chain AAs (BCAA; leucine, isoleucine, and valine), major non-essential AAs (alanine and glutamine, including glutamate), insulin, and ketone bodies were measured every hour during each HD session. After the start of the HD session, the plasma levels of insulin and all BCAAs dropped simultaneously. There was a significant subsequent increase in the plasma level of leucine and isoleucine levels, while valine levels remained constant. However, the recovery in levels of BCAAs during HD indicated a profound amount of BCAAs entering the blood from body tissues such as muscles. BCAAs may have surpassed their removal by HD. Ketone body levels increased continuously from the start of the sessions and reached high values in patients with DM. Synchronous changes in insulin depletion and an increase in the levels of ketone bodies may indicate disruption of energy metabolism. Conclusions This is the first report to demonstrate the time course of the changes in circulating levels of BCAAs and related metabolites in energy homeostasis during HD. An increase in BCAA levels during HD was found to be due to their transfer from the body tissue which suggested protein breakdown.


2022 ◽  
Author(s):  
Daniel I Benjamin ◽  
Pieter I Both ◽  
Joel S Benjamin ◽  
Christopher W Nutter ◽  
Jenna H Tan ◽  
...  

Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding. We show that ketosis, either endogenously produced during fasting or a ketogenic diet, or exogenously administered, promotes a deep quiescent state in muscle stem cells(MuSCs). Although deep quiescent MuSCs are less poised to activate, slowing muscle regeneration, they have markedly improved survival when facing sources of cellular stress. Further, we show that ketone bodies, specifically b hydroxybutyrate, directly promote MuSC deep quiescence via a non-metabolic mechanism. We show that b-hydroxybutyrate functions as an HDAC inhibitor within MuSCs leading to acetylation and activation of an HDAC1 target protein p53. Finally, we demonstrate that p53 activation contributes to the deep quiescence and enhanced resilience observed during fasting.


2022 ◽  
Author(s):  
Jen-Tsan Ashley Chi ◽  
Pao-Hwa Lin ◽  
Vladimir Tolstikov ◽  
Lauren Howard ◽  
Emily Y. Chen ◽  
...  

Background: Systemic treatments for prostate cancer (PC) have significant side effects. Thus, newer alternatives with fewer side effects are urgently needed. Animal and human studies suggest the therapeutic potential of low carbohydrate diet (LCD) for PC. To test this possibility, Carbohydrate and Prostate Study 2 (CAPS2) trial was conducted in PC patients with biochemical recurrence (BCR) after local treatment to determine the effect of a 6-month LCD intervention vs. usual care control on PC growth as measured by PSA doubling time (PSADT). We previously reported the LCD intervention led to significant weight loss, higher HDL, and lower triglycerides and HbA1c with a suggested longer PSADT. However, the metabolic basis of these effects are unknown. Methods: To identify the potential metabolic basis of effects of LCD on PSADT, serum metabolomic analysis was performed using baseline, month 3, and month 6 banked sera to identify the metabolites significantly altered by LCD and that correlated with varying PSADT. Results: LCD increased the serum levels of ketone bodies, glycine and hydroxyisocaproic acid. Reciprocally, LCD reduced the serum levels of alanine, cytidine, asymmetric dimethylarginine (ADMA) and 2-oxobutanoate. As high ADMA level is shown to inhibit nitric oxide (NO) signaling and contribute to various cardiovascular diseases, the ADMA repression under LCD may contribute to the LCD-associated health benefit. Regression analysis of the PSADT revealed a correlation between longer PSADT with higher level of 2-hydroxybutyric acids, ketone bodies, citrate and malate. Longer PSADT was also associated with LCD reduced nicotinamide, fructose-1, 6-biphosphate (FBP) and 2-oxobutanoate. Conclusion: These results suggest a potential association of ketogenesis and TCA metabolites with slower PC growth and conversely glycolysis with faster PC growth. The link of high ketone bodies with longer PSADT supports future studies of ketogenic diets to slow PC growth.


Author(s):  
K.I. Avgerinos ◽  
R.J. Mullins ◽  
J.M. Egan ◽  
D. Kapogiannis

BACKGROUND: Ketone bodies have been proposed as an “energy rescue” for the Alzheimer’s disease (AD) brain, which underutilizes glucose. Prior research has shown that oral ketone monoester (KME) safely induces robust ketosis in humans and has demonstrated cognitive-enhancing and pathology-reducing properties in animal models of AD. However, human evidence that KME may enhance brain ketone metabolism, improve cognitive performance and engage AD pathogenic cascades is scarce. Objectives: To investigate the effects of ketone monoester (KME) on brain metabolism, cognitive performance and AD pathogenic cascades in cognitively normal older adults with metabolic syndrome and therefore at higher risk for AD. Design: Double-blinded randomized placebo-controlled clinical trial. Setting: Clinical Unit of the National Institute on Aging, Baltimore, US. Participants: Fifty cognitively intact adults ≥ 55 years old, with metabolic syndrome. Intervention: Drinks containing 25 g of KME or isocaloric placebo consumed three times daily for 28 days. Outcomes: Primary: concentration of beta-hydroxybutyrate (BHB) in precuneus measured with Magnetic Resonance Spectroscopy (MRS). Exploratory: plasma and urine BHB, multiple brain and muscle metabolites detected with MRS, cognition assessed with the PACC and NIH toolbox, biomarkers of AD and metabolic mediators in plasma extracellular vesicles, and stool microbiome. Discussion: This is the first study to investigate the AD-biomarker and cognitive effects of KME in humans. Ketone monoester is safe, tolerable, induces robust ketosis, and animal studies indicate that it can modify AD pathology. By conducting a study of KME in a population at risk for AD, we hope to bridge the existing gap between pre-clinical evidence and the potential for brain-metabolic, pro-cognitive, and anti-Alzheimer’s effects in humans.


Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 862-864
Author(s):  
Arpita Chakraborty ◽  
Weena Stanley ◽  
M. Mukhyaprana Prabhu

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare metabolic disorder of oxidation of amino acids and fatty acids with an autosomal recessive inheritance. Patients usually present symptoms of MADD in the neonatal period, though it can also be diagnosed in the late adulthood. We present a 36-year-old male with MADD who had sensory axonal neuropathy, rhabdomyolysis metabolic acidosis, lactic acidosis, hypoglycemia and low ketone bodies and renal failure. Early diagnosis and prompt management with carnitine and riboflavin supplements can help in better management of this rare metabolic disorder.


2021 ◽  
Vol 23 (1) ◽  
pp. 246
Author(s):  
Bin Tong ◽  
Yusun Shi ◽  
Aaron Ntambiyukuri ◽  
Xia Li ◽  
Jie Zhan ◽  
...  

Peanut is one of the most important oil crops in the world. In China, the peanut is highly produced in its southern part, in which the arable land is dominated by acid soil. At present, miRNAs have been identified in stress response, but their roles and mechanisms are not clear, and no miRNA studies have been found related to aluminum (Al)-induced programmed cell death (PCD). In the present study, transcriptomics, sRNAs, and degradome analysis in the root tips of two peanut cultivars ZH2 (Al-sensitive, S) and 99-1507 (Al-tolerant, T) were carried out. Here, we generated a comprehensive resource focused on identifying key regulatory miRNA-target circuits that regulate PCD under Al stress. Through deep sequencing, 2284 miRNAs were identified and 147 miRNAs were differentially expressed under Al stress. Furthermore, 19237 target genes of 749 miRNAs were validated by degradome sequencing. GO and KEGG analyses of differential miRNA targets showed that the pathways of synthesis and degradation of ketone bodies, citrate cycle (TCA cycle), and peroxisome were responded to Al stress. The combined analysis of the degradome data sets revealed 89 miRNA-mRNA interactions that may regulate PCD under Al stress. Ubiquitination may be involved in Al-induced PCD in peanut. The regulatory networks were constructed based on the differentially expressed miRNAs and their targets related to PCD. Our results will provide a useful platform to research on PCD induced by Al and new insights into the genetic engineering for plant stress response.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baiyu Chen ◽  
Yalan Zhan ◽  
Miriam Kessi ◽  
Shimeng Chen ◽  
Juan Xiong ◽  
...  

Objective: The purpose of this study was to search for differential metabolites in urine organic acids, and to characterize metabolic features that can be used to identify metabolites for exploration of global developmental delay (GDD)/intellectual disability (ID) etiology and pathogenesis.Methods: We screened positive test results that could explain GDD/ID from 1,253 cases, and the major differential metabolites in 132 urine organic acids from the 1,230 cases with negative results (863 GDD cases, 367 ID cases), and 100 typically developing children (TD). Non-supervisory principal component analysis and orthogonal partial least squares discriminant analysis were used to develop models to distinguish GDD/ID from TD children, and to detect major differential metabolites.Results: We get 23 positive results that could identify the cause of GDD/ID from 1253 cases diagnosed with GDD/ID. Among 1,230 negative results, we get the differential metabolites of the GDD group and the ID group had the same trend compared with the TD group. Twenty four differential metabolites were obtained from the GDD group, and 25 from the ID group (VIP > 1.0, p < 0.01). These differential metabolites were mainly related to the following pathways: the synthesis and degradation of ketone bodies, citrate cycle, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, butanoate metabolism, pyruvate metabolism, fatty acid biosynthesis, valine, leucine and isoleucine degradation.Conclusion: The use of metabolomics research methods to detect urine organic acids of children with GDD/ID can discover differential metabolites, which might be valuable for future research on the etiology, pathogenesis, prognosis and possible interventions of GDD/ID. The significantly altered differential metabolites indicators could therefore be potential diagnostic biomarkers for GDD/ID.


Author(s):  
Madeleine M Mank ◽  
Leah F Reed ◽  
Camille J Walton ◽  
Madison LT Barup ◽  
Jennifer L Ather ◽  
...  

Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body, β-hydroxybutyrate (BHB). Feeding a ketogenic diet for three weeks to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an 'anti-obesogenic' gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.


Sign in / Sign up

Export Citation Format

Share Document