scholarly journals Subcellular localization of γ-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Evidence for at least two small glutamate compartments in brain

1975 ◽  
Vol 152 (3) ◽  
pp. 469-475 ◽  
Author(s):  
G L Reijnierse ◽  
H Veldstra ◽  
C J Van den Berg

The subcellular localizations of γ-aminobutyrate transaminase (EC 2.6.1.19) and glutamate dehydrogenase (EC 1.4.1.2) in brain tissue of adult rats were compared with each other and with those of NAD+-isocitrate dehydrogenase (EC 1.1.41) and monoamine oxidase (EC 1.4.3.4; kynuramine as substrate). Crude mitochondrial fractions from brain tissue were centrifuged in continuous sucrose density gradients. γ-Aminobutyrate transaminase and glutamate dehydrogenase were always found at a higher density than NAD+-isocitrate dehydrogenase and monoamine oxidase. When centrifuged for 1 h at 53 000gav., there was a slight difference between the distribution profiles of glutamate dehydrogenase and γ-aminobutyrate transaminase. This difference was larger when the centrifugation time was only 15 min. It is concluded that there are subpopulations of brain mitochondria with differing proportions of γ-aminobutyrate transaminase and glutamate dehydrogenase. The results are discussed in relation to evidence obtained with labelled precursors in vivo that there are at least two small glutamate compartments in adult brain.

1985 ◽  
Vol 105 (1) ◽  
pp. 1-6 ◽  
Author(s):  
C. L. Au ◽  
D. M. Robertson ◽  
D. M. de Kretser

ABSTRACT The hormonal control of inhibin production by adult rat testes was investigated using an in-vitro inhibin bioassay validated for the measurement of inhibin activity in charcoal-treated rat testicular extracts. The effect of hypophysectomy examined at 16 h, 3, 7 and 42 days after surgery showed a decrease in testicular inhibin content and seminiferous tubule fluid production by 7 days and a decrease in inhibin production by 42 days. Serum FSH and LH were suppressed 3 days after surgery. In 30-day chronically hypophysectomized adult rats treated for 3 days with twice daily s.c. injections of (a) human FSH (hFSH, 22 i.u./rat per day), (b) testosterone (5 mg/rat per day), (c) hFSH + testosterone (same doses as a and b), or (d) human chorionic gonadotrophin (hCG, 12 i.u./rat per day), hFSH or hFSH and testosterone stimulated an increase in testicular inhibin content but not in inhibin production or tubule fluid production. Testosterone and hCG had no effect on these parameters. It is concluded that in vivo, FSH alone stimulates an increase in testicular inhibin content. The failure to observe an increase in inhibin production in vivo is attributed to the suppression of seminiferous tubule fluid production under the same experimental conditions. J. Endocr. (1985) 105, 1–6


2008 ◽  
Vol 60 (4) ◽  
pp. 581-591
Author(s):  
Sanja Dacic ◽  
Sanja Pekovic ◽  
Maja Stojiljkovic ◽  
Irena Lavrnja ◽  
Danijela Stojkov ◽  
...  

The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs). In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.


1995 ◽  
Vol 74 (4) ◽  
pp. 1793-1799 ◽  
Author(s):  
M. L. Errington ◽  
T. V. Bliss ◽  
G. Richter-Levin ◽  
K. Yenk ◽  
V. Doyere ◽  
...  

1. We examined the efficacy of low-frequency trains (1-5 Hz) in producing long-term depression (LTD) or depotentiation in the hippocampus of the awake adult rat and in anesthetized rats aged from 10 days to 3 mo. 2. In the dentate gyrus we found no evidence that low-frequency trains produce either depotentiation or LTD in the awake, adult animal or in the anesthetized animal at any age tested (10 days-adult). 3. In area CA1 of both awake and anesthetized adult rats, we also found no evidence that low-frequency trains induced either LTD or depotentiation. Only in area CA1 of very young rats (10-11 days) was clear evidence for LTD and depotentiation obtained; at this age experiments were only possible in anesthetized animals. By 16 days, the ability to display both LTD and depotentiation was lost. 4. These experiments suggest that repetitive low-frequency stimulation evokes a developmentally regulated form of activity-dependent depression that in the hippocampus is limited to specific pathways in the young animal. Our results leave open the question of whether alternative patterns of activity can induce LTD and/or depotentiation in the adult awake rat.


1992 ◽  
Vol 118 (4) ◽  
pp. 889-900 ◽  
Author(s):  
G Wolswijk ◽  
M Noble

We have shown previously that oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells isolated from adult rat optic nerves can be distinguished in vitro from their perinatal counterparts on the basis of their much slower rates of division, differentiation, and migration when grown in the presence of cortical astrocytes or PDGF. This behavior is consistent with in vivo observations that there is only a modest production of oligodendrocytes in the adult CNS. As such a behavior is inconsistent with the likely need for a rapid generation of oligodendrocytes following demyelinating damage to the mature CNS, we have been concerned with identifying in vitro conditions that allow O-2Aadult progenitor cells to generate rapidly large numbers of progeny cells. We now provide evidence that many slowly dividing O-2Aadult progenitor cells can be converted to rapidly dividing cells by exposing adult optic nerve cultures to both PDGF and bFGF. In addition, these O-2Aadult progenitor cells appear to acquire other properties of O-2Aperinatal progenitor cells, such as bipolar morphology and high rate of migration. Although many O-2Aadult progenitor cells in cultures exposed to bFGF alone also divide rapidly, these cells are multipolar and migrate little in vitro. Oligodendrocytic differentiation of O-2Aadult progenitor cells, which express receptors for bFGF in vitro, is almost completely inhibited in cultures exposed to bFGF or bFGF plus PDGF. As bFGF and PDGF appear to be upregulated and/or released after injury to the adult brain, this particular in vitro response of O-2Aadult progenitor cells to PDGF and bFGF may be of importance in the generation of large numbers of new oligodendrocytes in vivo following demyelination.


2021 ◽  
Author(s):  
Jingu Lee ◽  
Joon-Goon Kim ◽  
Sujung Hong ◽  
Young Seo Kim ◽  
Soyeon Ahn ◽  
...  

AbstractCerebral microinfarct increases the risk of dementia. But how microscopic cerebrovascular disruption affects the brain tissue in cellular-level are mostly unknown. Herein, with a longitudinal intravital imaging, we serially visualized in vivo dynamic cellular-level changes in astrocyte, pericyte and neuron as well as microvascular integrity after the induction of cerebral microinfarction for 1 month in mice. At day 2-3, it revealed a localized edema with acute astrocyte loss, neuronal death, impaired pericyte-vessel coverage and extravascular leakage indicating blood-brain barrier (BBB) dysfunction. At day 5, edema disappeared with recovery of pericyte-vessel coverage and BBB integrity. But brain tissue continued to shrink with persisted loss of astrocyte and neuron in microinfarct until 30 days, resulting in a collagen-rich fibrous scar surrounding the microinfarct. Notably, reactive astrocytes appeared at the peri-infarct area early at day 2 and thereafter accumulated in the peri-infarct. Oral administration of a reversible monoamine oxidase B inhibitor significantly decreased the astrocyte reactivity and fibrous scar formation. Our result suggests that astrocyte reactivity may be a key target to alleviate the impact of microinfarction.


2011 ◽  
Vol 32 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Zhaolu Wang ◽  
Nuno Andrade ◽  
Malene Torp ◽  
Somsak Wattananit ◽  
Andreas Arvidsson ◽  
...  

Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-d-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.


2002 ◽  
Vol 87 (2) ◽  
pp. 1076-1085 ◽  
Author(s):  
Jenafer Evans ◽  
Colin Sumners ◽  
Jennifer Moore ◽  
Matthew J. Huentelman ◽  
Jie Deng ◽  
...  

Embryonic or neonatal rat neurons retain plasticity and are readily grown in tissue culture, but neurons of the adult brain were thought to be terminally differentiated and therefore difficult to culture. Recent studies, however, suggest that it may be possible to culture differentiated neurons from the hippocampus of adult rats. We modified these procedures to grow differentiated neurons from adult rat hypothalamus and brain stem. At day 7 in tissue culture and beyond, the predominant cell types in hypothalamic and brain stem cultures had a stellate morphology and could be subdivided into two distinct groups, one of which stained with antibodies to the immature neuron marker α-internexin, while the other stained with the astrocyte marker GFAP. The α-internexin positive cells were mitotic and grew to form a characteristic two-dimensional cellular network. These α-internexin positive cells coimmunostained for the neuronal markers MAP2, type III β-tubulin, and tau, and also bound tetanus toxin, but were negative for the oligodendrocyte marker GalC and also for the neurofilament triplet proteins NF-L, NF-M, and NF-H, markers of more mature neurons. Patch-clamp analysis of these α-internexin positive cells revealed small Ca2+ currents with a peak current of −0.5 ± 0.1 pA/pF at a membrane potential of −20 mV ( n = 5) and half-maximal activation at −30 mV ( n = 5). Na+ currents with a peak current density of −154.5 ± 49.8 pA/pF at a membrane potential of −15 mV ( n = 5) were also present. We also show that these cells can be frozen and regrown in tissue culture and that they can be efficiently infected by viral vectors. These cells therefore have the immunological and electrophysiological properties of immature mitotic neurons and should be useful in a variety of future studies of neuronal differentiation and function.


1981 ◽  
Vol 241 (3) ◽  
pp. E221-E225 ◽  
Author(s):  
K. Taya ◽  
G. S. Greenwald

Thirty-day-old rats given a single subcutaneous injection of 5 IU pregnant mare serum gonadotropin (PMS) at 0900 h ovulated on the morning of day 33 (= estrus). However, the second ovulation did not occur until 9.4 days later. To determine the mechanism responsible for the delay in the second ovulation, in vivo and in vitro determinations of steroid and peptide hormones were compared between PMS-primed immature rats and adult cyclic rats. In PMS-primed rats, the corpora lutea (CL) produced progesterone for 2 days longer (until day 36) than the CL of the adult rat. Serum levels of 20 alpha-dihydroprogesterone, testosterone, and estradiol in PMS-primed rats were significantly lower than the corresponding values in adult rats. Serum LH was consistently lower in the PMS-primed rats. An increase in serum FSH occurred on days 36–37, which may be responsible for maturation of the follicles destined to ovulate at the second ovulation. On day 37, the nonluteal ovary of the PMS-primed rats also began to produce in vitro appreciable amounts of testosterone and estradiol. These findings suggest that the greater levels of prolactin and/or low levels of luteinizing hormone during estrus in PMS-primed rats may be responsible for the prolonged secretion of progesterone by the CL. This in turn inhibits follicular maturation, indirectly by lowering serum LH, which is reflected in reduced ability of the follicles in vitro to produce testosterone and estradiol until the CL regress.


1984 ◽  
Vol 219 (1) ◽  
pp. 125-130 ◽  
Author(s):  
L M Roeder ◽  
J T Tildon ◽  
J H Stevenson

The rates of conversion into 14CO2 of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine were measured in the presence and absence of unlabelled alternative oxidizable substrates in whole homogenates from the brains of young and adult rats. The addition of unlabelled glutamine resulted in decreased 14CO2 production from [6-14C]glucose in brain homogenates from both young and adult rats. In contrast, glucose had no effect on [U-14C]glutamine oxidation. In suckling animals, both 3-hydroxybutyrate and acetoacetate decreased the rate of oxidation of [6-14C]glucose, but in adults only 3-hydroxybutyrate had an effect, and to a lesser degree. The addition of unlabelled glucose markedly enhanced the rates of oxidation of both ketone bodies in adult brain tissue and had little or no effect in the young. The rate of production of 14CO2 from [U-14C]glutamine was increased by the addition of unlabelled ketone bodies in brain homogenates from young, but not from adult rats. In the converse situation, unlabelled glutamine added to 14C-labelled ketone bodies diminished 14CO2 production in young rats, but had no effect in adult animals. These results revealed a complex age-dependent pattern of interaction in which certain substrates apparently competed with each other, whereas an enhanced rate of 14CO2 production was found with others.


1997 ◽  
Vol 19 (1) ◽  
pp. 67-77 ◽  
Author(s):  
S M Maguire ◽  
M R Millar ◽  
R M Sharpe ◽  
J Gaughan ◽  
P T K Saunders

ABSTRACT Iron is required for the normal development of germ cells during spermatogenesis. Because these cells have no direct access to systemic iron, there exists a shuttle system involving production and secretion of the iron-transporting protein transferrin by the Sertoli cells. Previous reports using cultures of immature Sertoli cells exposed to adult germ cells, or in vivo studies involving germ cell-depleted adult rat testes, concluded that production of transferrin by Sertoli cells is modulated by germ cell complement. In the present study we have used in situ hybridisation with cRNA probes directed against the 5′ and 3′ ends of transferrin mRNA to examine the pattern of expression of transferrin in the immature and adult rat testis. Adult rats were treated with ethane dimethane sulphonate or methoxyacetic acid (MAA) to manipulate their testosterone levels or germ cell complement respectively. Initial findings obtained using the 3′ probe showed a decrease in transferrin mRNA associated with round spermatid depletion. However, these data were not confirmed by in situ hybridisation when the 5′ probe was used. The specificity of the probes was examined using Northern blotting and the 3′ probe was found to hybridise to the germ cell transcript for hemiferrin even under conditions of high stringency. Examination of immature and pubertal rat testes by in situ hybridisation using the 5′ transferrin-specific probe found that as early as 14 days of age the level of expression of transferrin mRNA was clearly different between tubules, and the mRNA appeared to be expressed in Leydig cells on and after day 31. In the adult rat testis, maximal expression of transferrin mRNA was found at stages VIII-XIV, calling into question the interpretation of the results of some previous studies showing expression of transferrin mRNA at all stages of the spermatogenic cycle. This stage-specific pattern of expression was not altered by acute germ cell depletion using MAA. However, Northern blot analysis showed a statistically significant increase in transferrin mRNA expression at 7 days after MAA treatment when pachytene spermatocytes were depleted from tubules at all stages of the spermatogenic cycle at which transferrin is normally expressed. In conclusion, we found that transferrin mRNA expression was not modulated by round spermatids as has been reported previously but that meiotic germ cells may influence expression of transferrin at specific stages of the spermatogenic cycle.


Sign in / Sign up

Export Citation Format

Share Document