Physiology of Motor Deficits and the Potential of Motor Recovery After a Spinal Cord Injury

Author(s):  
V. Reggie Edgerton ◽  
Roland R. Roy
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Erin M. Triplet ◽  
Isobel A. Scarisbrick

Abstract Study design We completed retrospective analysis of statin use in individuals with neurologically significant spinal cord injury in a historical cohort study. Objective Our objective was to establish the prevalence of cholesterol-lowering agent use following spinal cord injury (SCI) and to determine the impact on recovery of motor function. Setting Patients enrolled in the Rochester Epidemiology Project in Olmsted County, Minnesota, USA from 2005 to 2018 were included in analysis. Methods Exclusion criteria: age <18, comorbid neurological disease, prior neurological deficit, nontraumatic injury, survival <1 year, or lack of motor deficit. Demographics and cholesterol-lowering agent use in 83 individuals meeting all criteria were recorded. A total of 68/83 individuals were then assessed for change in function over the first 2 months after injury using the ISNCSCI motor subscore. Statistical comparison between control and statin groups was done by two-sided Chi-squared test or two-tailed Student’s t test. Generalized regression was performed to assess associations between independent variables and functional outcome. Results 30% of individuals with SCI had a prescription for a cholesterol-lowering agent. No significant differences were observed in severity of injury or demographic composition between groups. The change in motor subscore was reduced in the statin group compared to controls (p = 0.03, Mann–Whitney). Both severity of injury and statin were significant predictors of reduced motor recovery (p = 0.001, and p = 0.04, respectively). Conclusions Both severity of SCI and statins were significant predictors of reduced motor recovery. Additional investigation is needed to address potential impact of statin-therapy in the context of CNS injury and repair.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Emma K. A. Schmidt ◽  
Pamela J. F. Raposo ◽  
Abel Torres-Espin ◽  
Keith K. Fenrich ◽  
Karim Fouad

Abstract Background Minocycline is a clinically available synthetic tetracycline derivative with anti-inflammatory and antibiotic properties. The majority of studies show that minocycline can reduce tissue damage and improve functional recovery following central nervous system injuries, mainly attributed to the drug’s direct anti-inflammatory, anti-oxidative, and neuroprotective properties. Surprisingly the consequences of minocycline’s antibiotic (i.e., antibacterial) effects on the gut microbiota and systemic immune response after spinal cord injury have largely been ignored despite their links to changes in mental health and immune suppression. Methods Here, we sought to determine minocycline’s effect on spinal cord injury-induced changes in the microbiota-immune axis using a cervical contusion injury in female Lewis rats. We investigated a group that received minocycline following spinal cord injury (immediately after injury for 7 days), an untreated spinal cord injury group, an untreated uninjured group, and an uninjured group that received minocycline. Plasma levels of cytokines/chemokines and fecal microbiota composition (using 16s rRNA sequencing) were monitored for 4 weeks following spinal cord injury as measures of the microbiota-immune axis. Additionally, motor recovery and anxiety-like behavior were assessed throughout the study, and microglial activation was analyzed immediately rostral to, caudal to, and at the lesion epicenter. Results We found that minocycline had a profound acute effect on the microbiota diversity and composition, which was paralleled by the subsequent normalization of spinal cord injury-induced suppression of cytokines/chemokines. Importantly, gut dysbiosis following spinal cord injury has been linked to the development of anxiety-like behavior, which was also decreased by minocycline. Furthermore, although minocycline attenuated spinal cord injury-induced microglial activation, it did not affect the lesion size or promote measurable motor recovery. Conclusion We show that minocycline’s microbiota effects precede its long-term effects on systemic cytokines and chemokines following spinal cord injury. These results provide an exciting new target of minocycline as a therapeutic for central nervous system diseases and injuries.


Author(s):  
Yannick Nicolas Gerber ◽  
Guillaume Patrick Saint-Martin ◽  
Claire Mathilde Bringuier ◽  
Sylvain Bartolami ◽  
Christophe Goze-Bac ◽  
...  

2009 ◽  
Vol 165 (2-3) ◽  
pp. 245-253 ◽  
Author(s):  
D.D. Fuller ◽  
M.S. Sandhu ◽  
N.J. Doperalski ◽  
M.A. Lane ◽  
T.E. White ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Raza Naseem Malik ◽  
Rachel Cote ◽  
Tania Lam

Skilled walking, such as obstacle crossing, is an essential component of functional mobility. Sensorimotor integration of visual and proprioceptive inputs is important for successful obstacle crossing. The objective of this study was to understand how proprioceptive deficits affect obstacle-crossing strategies when controlling for variations in motor deficits in ambulatory individuals with spinal cord injury (SCI). Fifteen ambulatory individuals with SCI and 15 able-bodied controls were asked to step over an obstacle scaled to their motor abilities under full and obstructed vision conditions. An eye tracker was used to determine gaze behaviour and motion capture analysis was used to determine toe kinematics relative to the obstacle. Combined, bilateral hip and knee proprioceptive sense (joint position sense and movement detection sense) was assessed using the Lokomat and customized software controls. Combined, bilateral hip and knee proprioceptive sense in subjects with SCI varied and was significantly different from able-bodied subjects. Subjects with greater proprioceptive deficits stepped higher over the obstacle with their lead and trail limbs in the obstructed vision condition compared with full vision. Subjects with SCI also glanced at the obstacle more frequently and with longer fixation times compared with controls, but this was not related to proprioceptive sense. This study indicates that ambulatory individuals with SCI rely more heavily on vision to cross obstacles and show impairments in key gait parameters required for successful obstacle crossing. Our data suggest that proprioceptive deficits need to be considered in rehabilitation programs aimed at improving functional mobility in ambulatory individuals with SCI.NEW & NOTEWORTHY This work is unique since it examines the contribution of combined, bilateral hip and knee proprioceptive sense on the recovery of skilled walking function, in addition to characterizing gaze behavior during a skilled walking task in people with motor-incomplete spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document