scholarly journals Programmable Chromosome Painting with Oligopaints

Author(s):  
Son C. Nguyen ◽  
Eric F. Joyce
Keyword(s):  
1994 ◽  
Vol 313 (2-3) ◽  
pp. 193-202 ◽  
Author(s):  
James D. Tucker ◽  
Denise A. Lee ◽  
Marilyn J. Ramsey ◽  
Jane Briner ◽  
Letha Olsen ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Talita Fernanda Augusto Ribas ◽  
Julio Cesar Pieczarka ◽  
Darren K. Griffin ◽  
Lucas G. Kiazim ◽  
Cleusa Yoshiko Nagamachi ◽  
...  

Abstract Background Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1–8, and 38 from microchromosomes 9–28. Results The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. Conclusions Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


Genetica ◽  
2013 ◽  
Vol 141 (1-3) ◽  
pp. 1-9 ◽  
Author(s):  
Marlon F. Pazian ◽  
Cristiane Kioko Shimabukuro-Dias ◽  
José Carlos Pansonato-Alves ◽  
Claudio Oliveira ◽  
Fausto Foresti

2005 ◽  
Vol 13 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Ling Huang ◽  
Wenhui Nie ◽  
Jinhuan Wang ◽  
Weiting Su ◽  
Fengtang Yang

CYTOLOGIA ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. 349-355 ◽  
Author(s):  
Wiwat Sangpakdee ◽  
Alongkoad Tanomtong ◽  
Monthira Monthatong ◽  
Krit Pinthong ◽  
Bhuvadol Gomontean ◽  
...  

1994 ◽  
Vol 6 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Harry Scherthan ◽  
Thomas Cremer ◽  
Ulfur Arnason ◽  
Heinz-Ulrich Weier ◽  
Antonio Lima-de-Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document