burhinus oedicnemus
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 29 (3) ◽  
pp. 225-234
Author(s):  
Y. O. Andryushchenko

The classifications of the grouping of the birds reflect the faunistic or the ecological position of the species in certain habitats and landscapes. Most of them consider the species diversity of the birds of the studied regions in general, including synanthropic, invasive and widespread species. This approach prevents singling out the habitats which are important for supporting the existence of native (or autochtonous) species and their groupings. Native groupings of the birds in the dry steppe zone of Ukraine are almost not studied despite the rapid contraction in the range and population of most component species, especially Anthropoides virgo, Otis tarda, Tetrax tetrax and Burhinus oedicnemus. The definition of the taxonomic and the ecological composition of these grouping will help in understanding the strategy of the reproduction and the protection of native avifauna. In connection with this, the faunistic-topomorphic classification of native birds in the dry steppes zone of Ukraine according to the following scheme is proposed: ornithofaunistic complex (by priority landscapes and habitats) – the place of the feeding (by priority substrate on/in which a species’ diet is extracted) – the nesting place (by the priority substrate of the location of the nest for nesting individuals) – the place of rest (the priority substrate where non-nesting individuals rest). The classification is aimed at the definition of the general requirements of native birds and their groupings in terms of the landscapes and the habitats which provide the conditions for their preservation and the protection in the researched region. It has been determined that in the south of Ukraine 33 nesting species are dry-steppe autochthons (18.3% of nesting species of the region), of which 18 species form the ornithofaunistic complex of dry steppes (Buteo rufinus, Perdix perdix, Anthropoides virgo, Otis tarda, Tetrax tetrax, Burhinus oedicnemus, Glareola nordmanni, Galerida cristata, Calandrella cinerea, C. rufescens, Melanocorypha calandra, Anthus campestris, Motacilla feldegg, Saxicola rubetra, S. torquata, Oenanthe oenanthe, Oe. isabellina, Emberiza melanocephala), and 15 species form the complex of the sea coast (Phalacrocoraх aristotelis, Phoenicopterus roseus, Tadorna ferruginea, T. tadorna, Mergus serrator, Charadrius alexandrinus, Recurvirostra avosetta, Larus ichthyaetus, L. melanocephalus, L. genei, L. cachinnans, L. michahellis, Gelochelidon nilotica, Hydroprogne caspia, Thalasseus sandvicensis). The above-mentioned species are mainly xerophiles (54.6% of species) and hygrophils (24.2% of species), and they are in the most threatened position because they feed, nest and rest mainly or exclusively on the soil surface. According to the proposed classification, native birds of dry steppes require: for xerophiles – areas of soil without vegetation or with rarefied low grass, which does not prevent birds from moving freely, searching and obtaining food, leading their chicks, looking over their territories; for hygrophiles – shallow water bodies with islands, surface vegetation, shallows, adjacent meadows and salt-marshes; for dendrophiles – single shrubs and trees or small groves; for most xerophiles and dendrophiles – fresh or slightly saline water bodies for drinking. Unfortunately, in the protected natural territories of the researched region, most native birds do not have this combination of the above-mentioned habitats, which are simultaneously suitable for feeding, nesting and resting.


2021 ◽  
pp. 1-7
Author(s):  
Kyle D. Kittelberger ◽  
Evan R. Buechley ◽  
Michael Ford ◽  
Kayahan Ağırkaya ◽  
Çağan Hakkı Şekercioğlu

2021 ◽  
Vol 55 (2) ◽  
Author(s):  
Yassine Teyar ◽  
Dimitri Giunchi ◽  
Mariella Baratti ◽  
Valentina Falchi ◽  
Mohammed Znari ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Talita Fernanda Augusto Ribas ◽  
Julio Cesar Pieczarka ◽  
Darren K. Griffin ◽  
Lucas G. Kiazim ◽  
Cleusa Yoshiko Nagamachi ◽  
...  

Abstract Background Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1–8, and 38 from microchromosomes 9–28. Results The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. Conclusions Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


2020 ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence In Situ Hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of ​​how chromosomal evolution occurred in this suborder.


2020 ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence In Situ Hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of ​​how chromosomal evolution occurred in this suborder.


Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05401
Author(s):  
Maria Foti ◽  
Rosario Grasso ◽  
Vittorio Fisichella ◽  
Antonietta Mascetti ◽  
Manuel Andrea Zafarana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document