Identification of Phosphorylated Amino Acid Residues During Gas Phase Sequencing

Author(s):  
Yuhuan Wang ◽  
Alexander W. Bell ◽  
Mark A. Hermodson ◽  
Peter J. Roach
1997 ◽  
Vol 119 (24) ◽  
pp. 5481-5488 ◽  
Author(s):  
Richard W. Vachet ◽  
Barney M. Bishop ◽  
Bruce W. Erickson ◽  
Gary L. Glish

1988 ◽  
Vol 250 (2) ◽  
pp. 401-405 ◽  
Author(s):  
M R Brown ◽  
D D Sheumack ◽  
M I Tyler ◽  
M E H Howden

The complete amino acid sequence of versutoxin, a lethal neurotoxic polypeptide isolated from the venom of male and female funnel-web spiders of the species Atrax versutus, was determined. Sequencing was performed in a gas-phase protein sequencer by automated Edman degradation of the S-carboxymethylated toxin and fragments of it produced by reaction with CNBr. Versutoxin consisted of a single chain of 42 amino acid residues. It was found to have a high proportion of basic residues and of cystine. The primary structure showed marked homology with that of robustoxin, a novel neurotoxin recently isolated from the venom of another funnel-web-spider species, Atrax robustus.


1999 ◽  
Vol 121 (16) ◽  
pp. 4031-4039 ◽  
Author(s):  
Anne E. Counterman ◽  
David E. Clemmer

2021 ◽  
Author(s):  
Melanie Cheung See Kit ◽  
Veronica V. Carvalho ◽  
Jonah Z. Vilseck ◽  
Ian Webb

Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Namiki ◽  
Sayuri Suzuki ◽  
Takeshi Masuda ◽  
Yasushi Ishihama ◽  
Hideyuki Okano

An intermediate filament protein, Nestin, is known as a neural stem/progenitor cell marker. It was shown to be required for the survival and self-renewal of neural stem cells according to the phenotypes of Nestin knockout mice. Nestin expression has also been reported in vascular endothelial cells, and we recently reported Nestin expression in proliferating endothelial progenitor cells, but not in mature endothelial cells. Using quantitative phosphoproteome analysis, we studied differences in phosphorylation levels between CNS Nestin in adult neural stem cells and vascular Nestin in adult bone-marrow-derived endothelial progenitor cells. We detected 495 phosphopeptides in the cell lysates of adult CNS stem/progenitor cells and identified 11 significant phosphorylated amino acid residues in the Nestin protein. In contrast, endothelial progenitor cells showed no significant phosphorylation of Nestin. We also measured neoplastic endothelial cells of the mouse brain and identified 13 phosphorylated amino acid residues in the Nestin protein. Among the 11 phosphorylated amino acids of adult CNS Nestin, five (S565, S570, S819, S883, and S886) were CNS Nestin-specific phosphorylation sites. Detection of the CNS-specific phosphorylation sites in Nestin, for example, by a phospho-specific Nestin antibody, may allow the expression of CNS Nestin to be distinguished from vascular Nestin.


2020 ◽  
Author(s):  
Melanie Cheung See Kit ◽  
Veronica V. Carvalho ◽  
Jonah Z. Vilsek ◽  
Ian Webb

Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.


2020 ◽  
Author(s):  
Melanie Cheung See Kit ◽  
Veronica V. Carvalho ◽  
Jonah Z. Vilsek ◽  
Ian Webb

Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.


2007 ◽  
Vol 66 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Tomohide Uno ◽  
Takuya Nakada ◽  
Sota Okamaoto ◽  
Masahiko Nakamura ◽  
Mamoru Matsubara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document