High-Throughput Screening of HCV RNA Replication Inhibitors by Means of a Reporter Replicon System

Author(s):  
Weidong Hao ◽  
Rohit Duggal
2013 ◽  
Vol 18 (9) ◽  
pp. 1027-1034 ◽  
Author(s):  
Auda A. Eltahla ◽  
Kurt Lackovic ◽  
Christopher Marquis ◽  
John-Sebastian Eden ◽  
Peter A. White

The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) plays an essential role in the replication of HCV and is a key target for novel antiviral therapies. Several RdRp inhibitors are in clinical trials and have increased response rates when combined with current interferon-based therapies for genotype 1 (G1) HCV patients. These inhibitors, however, show poor efficacy against non-G1 genotypes, including G3a, which represents ~20% of HCV cases globally. Here, we used a commercially available fluorescent dye to characterize G3a HCV RdRp in vitro. RdRp activity was assessed via synthesis of double-stranded RNA from the single-stranded RNA poly(C) template. The assay was miniaturized to a 384-well microplate format and a pilot high-throughput screen was conducted using 10,208 “lead-like” compounds, randomly selected to identify inhibitors of HCV G3a RdRp. Of 150 compounds demonstrating greatest inhibition, 10 were confirmed using both fluorescent and radioactive assays. The top two inhibitors (HAC001 and HAC002) demonstrated specific activity, with an IC50 of 12.7 µM and 1.0 µM, respectively. In conclusion, we describe simple, fluorescent-based high-throughput screening (HTS) for the identification of inhibitors of de novo RdRp activity, using HCV G3a RdRp as the target. The HTS system could be used against any positive-sense RNA virus that cannot be cultured.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

2020 ◽  
Author(s):  
Jia Shen Chew ◽  
Ken Chi Lik Lee ◽  
THI THANH NHA HO

<p>Lee and coworkers offers a kind of new concept to enzyme immobilization and explores its suitability in the context of miniaturisation and high-throughput screening. Here, polystyrene-immobilized ketoreductases are compared with its non-immobilized counterparts in terms of conversion and stereoselectivity (both determined by chiral HPLC), and the study indicates that the BioBeads perform similarly (sometimes slightly more selective) which may be useful whenever defined micro-scale amounts of biocatalysts were required in high-throughput experiment settings.</p>


Sign in / Sign up

Export Citation Format

Share Document