Use of Stem Cell Radiation Chimeras to Analyze How Domains of Specific Proteins Impact on Murine NK Cell Development In Vivo

Author(s):  
Rebecca H. Lian ◽  
Vinay Kumar
Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Christian P. Kalberer ◽  
Uwe Siegler ◽  
Aleksandra Wodnar-Filipowicz

Abstract Definition of the cytokine environment, which regulates the maturation of human natural killer (NK) cells, has been largely based on in vitro assays because of the lack of suitable animal models. Here we describe conditions leading to the development of human NK cells in NOD/SCID mice receiving grafts of hematopoietic CD34+ precursor cells from cord blood. After 1-week-long in vivo treatment with various combinations of interleukin (IL)–15, flt3 ligand, stem cell factor, IL-2, IL-12, and megakaryocyte growth and differentiation factor, CD56+CD3- cells were detected in bone marrow (BM), spleen, and peripheral blood (PB), comprising 5% to 15% of human CD45+ cells. Human NK cells of NOD/SCID mouse origin closely resembled NK cells from human PB with respect to phenotypic characteristics, interferon (IFN)–γ production, and cytotoxicity against HLA class 1–deficient K562 targets in vitro and antitumor activity against K562 erythroleukemia in vivo. In the absence of growth factor treatment, CD56+ cells were present only at background levels, but CD34+CD7+ and CD34-CD7+ lymphoid precursors with NK cell differentiation potential were detected in BM and spleen of chimeric NOD/SCID mice for up to 5 months after transplantation. Our results demonstrate that limitations in human NK cell development in the murine microenvironment can be overcome by treatment with NK cell growth–promoting human cytokines, resulting in the maturation of IFN-γ–producing cytotoxic NK cells. These studies establish conditions to explore human NK cell development and function in vivo in the NOD/SCID mouse model. (Blood. 2003;102:127-135)


2015 ◽  
Vol 212 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Meixiang Yang ◽  
Dan Li ◽  
Zai Chang ◽  
Zhongzhou Yang ◽  
Zhigang Tian ◽  
...  

E4BP4, a circadian protein, is indispensable for NK cell development. It remains largely unknown which signal is required to induce E4BP4 expression and what effects it has during NK cell differentiation. Here, we reveal that PDK1, a kinase upstream of mTOR, connects IL-15 signaling to E4BP4. Early deletion of PDK1 caused a severe loss of NK cells and compromised antitumor activity in vivo. PDK1-deficient NK cells displayed much weaker IL-15–induced mTOR activation and E4BP4 induction, as well as remarkable reduction in CD122, a receptor subunit specifying NK cell responsiveness to IL-15. The phenotypes were partially reversible by ectopic expression of E4BP4 or bypassed activation of mTOR. We also determined that PDK1-mediated metabolic signaling was dispensable for NK cell terminal maturation and survival. Thus, we identify a role for PDK1 signaling as a key mediator in regulating E4BP4 expression during early NK cell development. Our findings underscore the importance of IL-15 self-responsiveness through a positive feedback loop that involves PDK1–mTOR–E4BP4–CD122 signaling.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4122-4122
Author(s):  
Katja Sockel ◽  
Claudia Schönefeldt ◽  
Sieghart Sopper ◽  
Martin Wermke ◽  
Marc Schmitz ◽  
...  

Abstract Abstract 4122 The hypomethylating agent azacytidine (AZA) represents the standard treatment for many high-risk MDS and AML patients. While the clinical efficacy has been confirmed in several studies, the precise molecular mechanism of action has not been fully understood yet. Human NK-cells play an important role in the regulation of immune responses against malignant cells. Their function is controlled by a complex interplay of activating and inhibitory receptors - some of them being regulated by methylation of the respective genes. We, therefore explored, whether AZA modulates in vitro NK-cell function as well as in vivo during minimal-residual disease (MRD)-guided treatment of imminent relapse in MDS and AML patients treated within the prospective RELAZA trial (NCT00422890). Methods: After purifying NK-cells of healthy donors by MACS (magnetic cell sorting), NK-cells were exposed in vitro to different concentrations of AZA (100nM, 1μM, 3μM) with or without IL-2. In parallel, the NK-cell phenotype of patients (n=12) with AML or MDS, undergoing MRD-guided treatment with AZA after stem cell transplantation was monitored by FACS from peripheral blood samples on day 1, 5 and 7 of the first and second AZA cycle. All patients were still in complete haematological remission at the time of therapy. Results: In vitro, we observed a significant reduction (3,1% to 1,8% p=0.028) of the immature and cytokine-regulating CD56bright NK-cell subpopulation with increasing concentrations of AZA. There was a trend towards a reduced expression of the death-ligand TRAIL, the activating receptors NKG2D and NKp46 and for an increased expression of the inhibitory KIR CD158b1/b2, whereas we could not detect any changes in the expression of FAS-L, Perforin, Granzyme B, NKp30, NKp44, CD69, CD57, DNAM-1, CD16, and NKG2A-CD94. Confirmatory, we observed a significant decrease in the expression of TRAIL (p=0.003), NKG2D (p=0.03) and NKp46 (p=0.006) during AZA treatment in-vivo. Interestingly, these changes appeared to be reversible. The observed reduction of NK-cell activating receptors and TRAIL during AZA treatment correlated with a reduction or stable course of MRD in all analyzed patients. Conclusion: In summary these data suggest that the clinical effects of AZA are not mediated by enhancing NK-cell activity. In fact, the drug may have inhibitory effects on NK-cell function which should be considered when applying AZA in the post-transplant setting. Disclosures: Platzbecker: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2008 ◽  
Vol 206 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Nicholas D. Huntington ◽  
Nicolas Legrand ◽  
Nuno L. Alves ◽  
Barbara Jaron ◽  
Kees Weijer ◽  
...  

The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self–major histocompatability complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2−/−γc−/− mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor α (IL-15Rα) significantly augmented human NK cells. IL-15–IL-15Rα complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16+KIR+ NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56hiCD16−KIR− to CD56loCD16+KIR−, and finally to CD56loCD16+KIR+. These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15–responsive cells during immunotherapy strategies.


2008 ◽  
Vol 205 (10) ◽  
pp. 2419-2435 ◽  
Author(s):  
Hailong Guo ◽  
Asanga Samarakoon ◽  
Bart Vanhaesebroeck ◽  
Subramaniam Malarkannan

Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in regulating B cell receptor– and T cell receptor–mediated signaling. However, their role in natural killer (NK) cell development and functions is not well understood. Using mice expressing p110δD910A, a catalytically inactive p110δ, we show that these mice had reduced NK cellularity, defective Ly49C and Ly49I NK subset maturation, and decreased CD27High NK numbers. p110δ inactivation marginally impaired NK-mediated cytotoxicity against tumor cells in vitro and in vivo. However, NKG2D, Ly49D, and NK1.1 receptor–mediated cytokine and chemokine generation by NK cells was severely affected in these mice. Further, p110δD910A/D910A NK cell–mediated antiviral responses through natural cytotoxicity receptor 1 were reduced. Analysis of signaling events demonstrates that p110δD910A/D910A NK cells had a reduced c-Jun N-terminal kinase 1/2 phosphorylation in response to NKG2D-mediated activation. These results reveal a previously unrecognized role of PI3K-p110δ in NK cell development and effector functions.


2019 ◽  
Vol 2 (2) ◽  
pp. e201800195 ◽  
Author(s):  
Masashi Matsuda ◽  
Rintaro Ono ◽  
Tomonori Iyoda ◽  
Takaho Endo ◽  
Makoto Iwasaki ◽  
...  

The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 357-357 ◽  
Author(s):  
Ryan P Sullivan ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Catherine R Keppel ◽  
Elizabeth Germino ◽  
...  

Abstract Abstract 357 NK cells are innate immune lymphocytes important for early host defense against infectious pathogens and malignant transformation. MicroRNAs (miRNAs) are small regulatory RNAs that control a wide variety of cellular processes by specific targeting of mRNA 3'UTRs. The Dicer1 gene encodes a conserved enzyme essential for miRNA processing, and Dicer1 deficiency leads to a global defect in miRNA biogenesis. While miRNA expression and regulation of adaptive T and B lymphocytes are well established, their role in the regulation of NK cell biology remains unclear. We postulated that miRNAs serve an essential role in orchestrating NK cell development and activation. To test this hypothesis, we combined lymphocyte-restricted hCD2-Cre transgenic, Rosa26-YFP-Cre-reporter, and Dicer1 ‘floxed' mice. In this model, 25–50% of Dicer1 wt/wt NK cells are YFP+ marking expression of Cre. As expected, YFP+ NK cells from Dicer1 fl/fl and fl/wt mice were confirmed to excise Dicer1, and exhibit decreased total miRNA content based on Nanostring profiling and real-time qPCR (Dicer1 fl/fl: P<0.001, fl/wt: P<0.01). MiRNA-deficient Dicer1 fl/fl mice exhibited reduced YFP+ NK percentages (spleen Dicer1 fl/fl: 14±4%, fl/wt: 35±7%, wt/wt 36±7%, P<0.001) as well as reduced absolute numbers of YFP+ NK cells [spleen Dicer1 fl/fl: 3.4±0.6×10E5, fl/wt: 6.3±1.7×10E5, wt/wt 6.1±.99×10E5, P<0.01]. In addition, Dicer1 fl/fl mice had reductions NK cell precursors in the BM (stage 2–3 NK precursors mean decrease 70±14% in Dicer1 fl/fl compared to wt/wt, P <0.01). Further, Dicer1 fl/fl NK cells exhibited reduced survival ex vivo when cultured in medium (P<0.01), low dose- (P<0.01), or high dose-IL-15 (P<0.01). These data collectively indicate that Dicer1-dependent miRNAs regulate NK cell development and homeostasis, and the net effect of miRNA loss is impaired NK development and/or survival. However, in our model Dicer1-deficient mature NK cells exhibited enhanced functionality; a finding that contrasts to less NK selective miRNA-deficient NK cell models (Bezman et al. J Immunol 185:3835, 2010). Degranulation (CD107a+, a surrogate for cytotoxicity) was enhanced in vitro in response to YAC-1 tumor target cells (P<0.05) and activating NK cell receptor ligation (P<0.001). This was unlikely due to alteration in activating NK cell receptor expression since the surface density of NKG2D and NKp46 were not affected by miRNA deficiency. Moreover, interferon-gamma (IFN-γ) production was enhanced in vitro in miRNA-deficient NK cells in response to IL-12+IL-15 (P<0.01), YAC-1 tumor target cells (P<0.01), and activating NK cell receptor ligation (P<0.001). Further, evaluation of NK cells 36 hours after infection with MCMV resulted in significantly increased IFN-γ production (% NK YFP+IFN-γ+) in Dicer1 fl/fl (64± 4.9%) vs. fl/wt (52±11%, p <0.01) or vs. wt/wt (41±6%, p <0.001) in vivo. MiRs-15/16 were identified as abundant miRNAs in NK cells that had reduced expression in Dicer1 fl/fl NK cells, and are predicted to target the murine IFN-γ 3'UTR. This targeting was validated in vitro, by transfecting 293T cells with miRNA-15/16 or control over-expression vectors and a sensor plasmid that places luciferase under the control of the murine IFN-γ 3'UTR (34% decrease, P<0.01). Moreover, the targeting was direct, since miR-15/16 targeting of IFN-γ was abrogated after mutation of two predicted binding sites in the IFN-γ 3'UTR. These data indicated that miR-15/16 may regulate IFN-γ translation by resting NK cells. Thus, our study suggests that the function of miRNAs in NK cell biology is complex, with an important role in NK cell development, survival and/or homeostasis, while tempering peripheral NK cell activation. Further study of individual miRNAs in an NK cell specific fashion will provide insight into these complex miRNA regulatory effects in NK cell development/survival and effector function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3488-3499 ◽  
Author(s):  
Luca Vago ◽  
Barbara Forno ◽  
Maria Pia Sormani ◽  
Roberto Crocchiolo ◽  
Elisabetta Zino ◽  
...  

AbstractIn this study, we have characterized reconstitution of the natural killer (NK) cell repertoire after haploidentical CD34+ selected hematopoietic stem cell transplantation (HSCT) for high-risk hematologic malignancies. Analysis focused on alloreactive single-KIR+ NK cells, which reportedly are potent antileukemic effectors. One month after HSCT, CD56bright/CD56dim NK-cell subsets showed inverted ratio and phenotypic features. CD25 and CD117 down-regulation on CD56bright, and NKG2A and CD62L up-regulation on CD56dim, suggest sequential CD56bright-to-CD56dim NK-cell maturation in vivo. Consistently, the functional potential of these maturation intermediates against leukemic blasts was impaired. Mature receptor repertoire reconstitution took at least 3 months. Importantly, at this time point, supposedly alloreactive, single-KIR+ NK cells were not yet fully functional. Frequency of these cells was highly variable, independently from predicted NK alloreactivity, and below 1% of NK cells in 3 of 6 alloreactive patients studied. In line with these observations, no clinical benefit of predicted NK alloreactivity was observed in the total cohort of 56 patients. Our findings unravel the kinetics, and limits, of NK-cell differentiation from purified haploidentical hematopoietic stem cells in vivo, and suggest that NK-cell antileukemic potential could be best exploited by infusion of mature single-KIR+ NK cells selected from an alloreactive donor.


Sign in / Sign up

Export Citation Format

Share Document