In Vivo Functional Tests for Assessing Immunotoxicity in Birds

Author(s):  
Keith A. Grasman
Keyword(s):  
2008 ◽  
Vol 69 (4) ◽  
pp. 513-522 ◽  
Author(s):  
C.M. O’ Meara ◽  
J.P. Hanrahan ◽  
N.S. Prathalingam ◽  
J.S. Owen ◽  
A. Donovan ◽  
...  

2020 ◽  
Author(s):  
Mei Qin ◽  
Fei Han ◽  
Jian Wu ◽  
Feng-xia Gao ◽  
Yuan Li ◽  
...  

Abstract Background: As an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression, KDM6B has been implicated in the development and malignant progression in various types of cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not been explored.Methods: The expression of KDM6B in human ESCC tissues and cell lines was examined using qRT-PCR, immunohistochemical staining and immunoblotting. The effects of KDM6B on the proliferation and metastasis of ESCC were examined using in vitro and in vivo functional tests. RNA-seq and ChIP-seq assay were used to demonstrate the molecular biological mechanism of KDM6B in ESCC.Results: We show that the expression level of KDM6B increased significantly in patients with lymph node metastasis. KDM6B knockdown reduces proliferation and metastasis of ESCC cells, while KDM6B overexpression has the opposite effects. Mechanistically, KDM6B regulates TNFA_SIGNALING_VIA_NFκB signalling pathways, and H3K27me3 binds to the promoter region of C/EBPβ, leading to the promotion of C/EBPβ transcription. Besides, we show that GSK-J4, a chemical inhibitor of KDM6B,markedly inhibits proliferation and metastasis of ESCC cells.Conclusions: KDM6B promotes ESCC progression by increasing the transcriptional activity of C/EBPβ depending on its H3K27 demethylase activity.


1979 ◽  
Vol 23 (1) ◽  
pp. 34-40 ◽  
Author(s):  
J M Rhodes ◽  
J Bennedsen ◽  
S O Larsen ◽  
S Riisgaard ◽  
J V Spärck

2021 ◽  
Author(s):  
mei qin ◽  
fei han ◽  
jian wu ◽  
fengxia gao ◽  
yuan li ◽  
...  

Abstract BackgroundAs an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression, KDM6B has been implicated in the development and malignant progression in various types of cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not been explored. MethodsThe expression of KDM6B in human ESCC tissues and cell lines was examined using qRT-PCR, immunohistochemical staining and immunoblotting. The effects of KDM6B on the proliferation and metastasis of ESCC were examined using in vitro and in vivo functional tests. RNA-seq and ChIP-seq assay were used to demonstrate the molecular biological mechanism of KDM6B in ESCC.ResultsWe show that the expression level of KDM6B increased significantly in patients with lymph node metastasis. Furthermore, we confirmed that KDM6B knockdown reduces proliferation and metastasis of ESCC cells, while KDM6B overexpression has the opposite effects. Mechanistically, KDM6B regulates TNFA_SIGNALING_VIA_NFκB signalling pathways, and H3K27me3 binds to the promoter region of C/EBPβ, leading to the promotion of C/EBPβ transcription. Besides, we show that GSK-J4, a chemical inhibitor of KDM6B, markedly inhibits proliferation and metastasis of ESCC cells. ConclusionsThe present study demonstrated that KDM6B promotes ESCC progression by increasing the transcriptional activity of C/EBPβ depending on its H3K27 demethylase activity.


1975 ◽  
Vol 66 (1) ◽  
pp. 1-30 ◽  
Author(s):  
W Lehman ◽  
A G Szent-Györgyi

The control systems regulating muscle contraction in approximately 100 organisms have been categorized. Both myosin control and actin control operate simultaneously in the majority of invertebrates tested. These include insects, chelicerates, most crustaceans, annelids, priapulids, nematodes, and some sipunculids. Single myosin control is present in the muscles of molluscs, brachiopods, echinoderms, echiuroids, and nemertine worms. Single actin control was found in the fast muscles of decapods, in mysidacea, in a single sipunculid species, and in vertebrate striated muscles. Classification is based on functional tests that include measurements of the calcium dependence of the actomyosin ATPase activity in the presence and the absence of purified rabbit actin and myosin. In addition, isolated thin filaments and myosins were also analyzed. Molluscs lack actin control since troponin is not present in sufficient quantities. Even though the functional tests indicate the complete lack of myosin control in vertebrate striated muscle, it is difficult to exclude unambiguously the in vivo existence of this regulation. Both control systems have been found in animals from phyla which evolved early. We cannot ascribe any simple correlation between ATPase activity, muscle structure, and regulatory mechanisms.


2021 ◽  
Vol 31 (2) ◽  
pp. 167-177
Author(s):  
E. L. Amelina ◽  
A. S. Efremova ◽  
Yu. L. Melyanovskaya ◽  
N. V. Bulatenko ◽  
T. B. Bukharova ◽  
...  

Intestinal current measurement (ICM) and forskolin-induced swelling (FIS) assay in human intestinal organoids from rectal biopsies of cystic fibrosis (CF) patients are the new functional tests for assessment of CFTR channel activity that are widely used in the leading laboratories worldwide for scientific and clinical studies.The aim of the study was to assess the use of the new functional tests in adult CF patients with identified N1303K and R334W CFTR gene variants.Methods. Rectal suction biopsies were obtained from the two CF patients aged 36 and 27 years with N1303K/3821delT and R334W/F508del CFTR mutations, respectively. Results of the ICM and FIS assay in intestinal organoids were compared to the clinical data.Results. ICM has demonstrated that R334W is a ‘mild’ genetic variant with high residual CFTR channel activity. At the same time, N1303K is a ‘severe’ genetic variant and leads to a severe loss of CFTR channel function. These findings correlate with the clinical data. CFTR modulators compensate for the reduced activity of the R334W CFTR variant, as shown by the FIS assay. But there was a limited response of the forskolin-stimulated organoids to VX-770 potentiator and VX-809 corrector in the cells with N1303K genetic variant.Conclusion. ICM and FIS assay in human intestinal organoids are reliable methods for quantification of CFTR channel activity. They can also predict the efficacy of the targeted therapy in CF patients in vivo.


The Analyst ◽  
2019 ◽  
Vol 144 (15) ◽  
pp. 4677-4686
Author(s):  
Rida Al-Rifai ◽  
Claire Tournois ◽  
Samar Kheirallah ◽  
Nicole Bouland ◽  
Gaël Poitevin ◽  
...  

We have investigated the development of murine hindlimb ischemia from day 1 to day 55 after femoral artery ligation (FAL) using blood flow analysis, functional tests, histopathological staining, andin vivoRaman spectroscopy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mei Qin ◽  
Fei Han ◽  
Jian Wu ◽  
Feng-xia Gao ◽  
Yuan Li ◽  
...  

Abstract Background As an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression, KDM6B has been implicated in the development and malignant progression in various types of cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not been explored. Methods The expression of KDM6B in human ESCC tissues and cell lines was examined using RT-qPCR, immunohistochemical staining and immunoblotting. The effects of KDM6B on the proliferation and metastasis of ESCC were examined using in vitro and in vivo functional tests. RNA-seq and ChIP-seq assay were used to demonstrate the molecular biological mechanism of KDM6B in ESCC. Results We show that the expression level of KDM6B increased significantly in patients with lymph node metastasis. Furthermore, we confirmed that KDM6B knockdown reduces proliferation and metastasis of ESCC cells, while KDM6B overexpression has the opposite effects. Mechanistically, KDM6B regulates TNFA_SIGNALING_VIA_NFκB signalling pathways, and H3K27me3 binds to the promoter region of C/EBPβ, leading to the promotion of C/EBPβ transcription. Besides, we show that GSK-J4, a chemical inhibitor of KDM6B, markedly inhibits proliferation and metastasis of ESCC cells. Conclusions The present study demonstrated that KDM6B promotes ESCC progression by increasing the transcriptional activity of C/EBPβ depending on its H3K27 demethylase activity.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Sign in / Sign up

Export Citation Format

Share Document