Induction and Differentiation of Dental Epithelium in Vivo and in Vitro

Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.

2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


1981 ◽  
Vol 89 (2) ◽  
pp. 276-283 ◽  
Author(s):  
P Ekblom ◽  
E Lehtonen ◽  
L Saxén ◽  
R Timpl

Conversion of the nephrogenic mesenchyme into epithelial tubules requires an inductive stimulus from the ureter bud. Here we show with immunofluorescence techniques that the undifferentiated mesenchyme before induction expresses uniformly type I and type III collagens. Induction both in vivo and in vitro leads to a loss of these proteins and to the appearance of basement membrane components including type IV collagen. This change correlates both spatially and temporally with the determination of the mesenchyme and precedes and morphological events. During morphogenesis, type IV collagen concentrates at the borders of the developing tubular structures where, by electron microscopy, a thin, often discontinuous basal lamina was seen to cover the first pretubular cell aggregates. Subsequently, the differentiating tubules were surrounded by a well-developed basal lamina. No loss of the interstitial collagens was seen in the metanephric mesenchyme when brought into contact with noninducing tissues or when cultured alone. Similar observations were made with nonnephrogenic mesenchyme (salivary, lung) when exposed to various heterotypic tissues known to induce tubules in the nephrogenic mesenchyme. The sequential shift in the composition of the extracellular matrix from an interstitial, mesenchymal type to a differentiated, epithelial type is so far the first detectable response of the nephrogenic mesenchyme to the tubule-inducing signal.


2020 ◽  
Vol 48 (1) ◽  
pp. 1167-1177
Author(s):  
Minyue Zhou ◽  
Xiao Chen ◽  
Yanling Qiu ◽  
He Chen ◽  
Yaoqiang Liu ◽  
...  
Keyword(s):  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 603
Author(s):  
Hiroomi Sakurai ◽  
Yuri Ikeuchi-Takahashi ◽  
Ayaka Kobayashi ◽  
Nobuyoshi Yoshimura ◽  
Chizuko Ishihara ◽  
...  

In order to relieve pain due to oral mucositis, we attempted to develop mucoadhesive microparticles containing indomethacin (IM) and gel preparations with IM microparticles that can be applied to the oral cavity. The mucoadhesive microparticles were prepared with a simple composition consisting of IM and polyvinyl alcohol (PVA). Two kinds of PVA with different block properties were used, and microparticles were prepared by heating-filtration and mixing-drying. From the X-ray powder diffraction patterns, differential scanning calorimetry thermograms, and morphological features of the IM microparticles, IM should exist as polymorphic forms in the microparticles. Rapid drug release properties were observed in the IM microparticles. Increased drug retention was observed in IM microparticles containing PVA, and the IM-NK(50) gel, using a common block character PVA and heating-filtration, showed good long-term drug retention properties. In vivo experiments showing significantly higher drug concentrations in the oral mucosa were observed with IM microparticles prepared by heating-filtration, and the IM-NK(50) gel maintained significantly higher drug concentrations in the oral mucosa. From these results, the IM-NK(50) gel may be useful as a preparation for relieving oral mucositis pain.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


2012 ◽  
Vol 91 (7) ◽  
pp. 642-650 ◽  
Author(s):  
K. Moharamzadeh ◽  
H. Colley ◽  
C. Murdoch ◽  
V. Hearnden ◽  
W.L. Chai ◽  
...  

Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.


2014 ◽  
Vol 3 (3) ◽  
pp. 375-386 ◽  
Author(s):  
Javier Ganz ◽  
Ina Arie ◽  
Tali Ben-Zur ◽  
Michal Dadon-Nachum ◽  
Sammy Pour ◽  
...  
Keyword(s):  

2013 ◽  
Vol 20 (4) ◽  
pp. 17-23
Author(s):  
N. S Sergeeva ◽  
I. K Sviridova ◽  
G. A Frank ◽  
V. A Kirsanova ◽  
S. A Akhmedova ◽  
...  

Results of in vitro and in vivo medico5biological study of mineral-polymer composites (MPC) based on high molecular polylactoglycolide and natural A. cervicornis coral skeleton with vari5 ous dispersity (600 µm) as materials for bone defects substitution are presented. On the model of human fibroblasts in vitro it was shown that MPC were not toxic and possessed satisfactory matrix (for cells) properties. The optimum for composite size of natural coral granules made up 200-600 µm. MPC biocompatibility was shown in subcutaneous test in mice. However comparatively slow subcutaneous substitution of both polylactoglycolide and MPC on its basis by connective tissue. Study of MPC and its components’ osteoplastic potential showed that in the zone of fenestral tibia defect in rats polylactoglycolide was substituted by connective tissue. Periosteal osteogenesis that in MPC was supplemented by enchondral osteogenesis was observed around the particles of natural coral skeleton.


Sign in / Sign up

Export Citation Format

Share Document