Erratum to: Heterologous Gene Expression in the Hyperthermophilic Archaeon Sulfolobus solfataricus

Author(s):  
Angel Angelov ◽  
Wolfgang Liebl
2004 ◽  
Vol 186 (18) ◽  
pp. 6070-6076 ◽  
Author(s):  
Naeem Rashid ◽  
Tamotsu Kanai ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT Four orthologous genes (TK1108, TK1404, TK1777, and TK2185) that can be annotated as phosphomannomutase (PMM) genes (COG1109) have been identified in the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. We previously found that TK1777 actually encodes a phosphopentomutase. In order to determine which of the remaining three orthologues encodes a phosphoglucomutase (PGM), we examined the PGM activity in T. kodakaraensis cells and identified the gene responsible for this activity. Heterologous gene expression and purification and characterization of the recombinant protein indicated that TK1108 encoded a protein with high levels of PGM activity (690 U mg−1), along with high levels of PMM activity (401 U mg−1). Similar analyses of the remaining two orthologues revealed that their protein products exhibited neither PGM nor PMM activity. PGM activity and transcription of TK1108 in T. kodakaraensis were found to be higher in cells grown on starch than in cells grown on pyruvate. Our results clearly indicate that, among the four PMM gene orthologues in T. kodakaraensis, only one gene, TK1108, actually encodes a protein with PGM and PMM activities.


BioTechniques ◽  
2001 ◽  
Vol 30 (3) ◽  
pp. 474-476 ◽  
Author(s):  
Ichiro Matsumura ◽  
Mark J. Olsen ◽  
Andrew D. Ellington

1995 ◽  
Vol 73 (S1) ◽  
pp. 891-897 ◽  
Author(s):  
James M. Cregg ◽  
David R. Higgins

The methanol-utilizing yeast Pichia pastoris has been developed as a host system for the production of heterologous proteins of commercial interest. An industrial yeast selected for efficient growth on methanol for biomass generation, P. pastoris is readily grown on defined medium in continuous culture at high volume and density. A unique feature of the expression system is the promoter employed to drive heterologous gene expression, which is derived from the methanol-regulated alcohol oxidase I gene (AOX1) of P. pastoris, one of the most efficient and tightly regulated promoters known. The strength of the AOX1 promoter results in high expression levels in strains harboring only a single integrated copy of a foreign-gene expression cassette. Levels may often be further enhanced through the integration of multiple cassette copies into the P. pastoris genome and strategies to construct and select multicopy cassette strains have been devised. The system is particularly attractive for the secretion of foreign-gene products. Because P. pastoris endogenous protein secretion levels are low, foreign secreted proteins often appear to be virtually the only proteins in the culture broth, a major advantage in processing and purification. Key words: heterologous gene expression, methylotrophic yeast, Pichia pastoris, secretion, glycosylation.


2004 ◽  
Vol 22 (11) ◽  
pp. 557-559 ◽  
Author(s):  
Pascal Dubessay ◽  
Michel Pagès ◽  
Frédéric Delbac ◽  
Patrick Bastien ◽  
Christian Vivares ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Irene Tomico-Cuenca ◽  
Robert L. Mach ◽  
Astrid R. Mach-Aigner ◽  
Christian Derntl

AbstractFungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.


Sign in / Sign up

Export Citation Format

Share Document