heterologous gene
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 33)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Marion A. L. Picard ◽  
Fiona Leblay ◽  
Cecile Cassan ◽  
Mathilde Decourcelle ◽  
Anouk Willemsen ◽  
...  

Redundancy in the genetic code allows for differences in transcription and/or translation efficiency between mRNA molecules carrying synonymous polymorphisms, with potential phenotypic impact at the molecular and at the organismal level. A combination of neutral and selective processes determines the global genome codon usage preferences, as well as local differences between genes within a genome and between positions along a single gene. The relative contribution of evolutionary forces at shaping codon usage bias in eukaryotes is a matter of debate, especially in mammals. The main riddle remains understanding the sharp contrast between the strong molecular impact of gene expression differences arising from codon usage preferences and the thin evidence for codon usage selection at the organismal level. Here we report a multiscale analysis of the consequences of alternative codon usage on heterologous gene expression in human cells. We generated synonymous versions of the shble antibiotic resistance gene, fused to a fluorescent reporter, and expressed independently them in human HEK293 cells. We analysed: i) mRNA-to-DNA and protein-to-mRNA ratios for each shble version; ii) cellular fluorescence, using flow cytometry, as a proxy for single cell-level construct expression; and iii) real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cellular fitness. Our results show that differences in codon usage preferences in our focal gene strongly impacted the molecular and the cellular phenotype: i) they elicited large differences in mRNA and in protein levels, as well in mRNA-to-protein ratio; ii) they introduced splicing events not predicted by current algorithms; iii) they lead to reproducible phenotypic heterogeneity as different multimodal distributions of cellular fluorescence EGFP; iv) they resulted in a trade-off between burden of heterologous expression and antibiotic resistance. While certain codon usage-related variables monotonically correlated with protein expression, other variables (e.g. CpG content or mRNA folding energy) displayed a bell-like behaviour. We interpret that codon usage preferences strongly shape the molecular and cellular phenotype in human cells through a direct impact on gene expression.


2021 ◽  
Author(s):  
Arthur J JALLET ◽  
Antonin Demange ◽  
Fiona Leblay ◽  
Mathilde Decourcelle ◽  
Khadija El Koulali ◽  
...  

The frequency of synonymous codons in protein coding genes is non-random and varies both between species and between genes within species. Whether this codon usage bias (CUBias) reflects underlying neutral mutational processes or is instead shaped by selection remains an open debate, especially regarding the role of selection for enhanced protein production. Variation in CUBias of a gene (be it natural synonymous mutations or biotechnological synonymous recoding) can have an enormous impact on its expression by diverse cis- acting mechanisms. But expression of genes with extreme CUBias can also lead to strong phenotypic effects by altering the overall intracellular translation homeostasis via competition for ribosomal machinery or tRNA depletion. In this study, we expressed at high levels in human cells six different synonymous versions of a gene and used matched transcriptomic and proteomic data to evaluate the impact of CUBias of the heterologous gene on the translation of cellular transcripts. Our experimental design focused specifically on differences during translation elongation. Response to expression of the different synonymous sequences was assessed by various approaches, ranging from analyses performed on a per-gene basis to more integrated approaches of the cell as a whole. We observe that the transcriptome displayed substantial changes as a result of heterologous gene expression by triggering an intense antiviral and inflammatory response, but that changes in the proteomes were very modest. Most importantly we notice that changes in translation efficiency of cellular transcripts were not associated with the direction of the CUBias of the heterologous sequences, thereby providing only limited support for trans- acting effects of synonymous changes. We interpret that, in human cells in culture, changes in CUBias can lead to important cis- acting effects in gene expression, but that cellular homeostasis can buffer the phenotypic impact of overexpression of heterologous genes with extreme CUBias.


2021 ◽  
pp. e00695
Author(s):  
Sukanya Jeennor ◽  
Jutamas Anantayanon ◽  
Chanikul Chutrakul ◽  
Sarocha Panchanawaporn ◽  
Kobkul Laoteng

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Irene Tomico-Cuenca ◽  
Robert L. Mach ◽  
Astrid R. Mach-Aigner ◽  
Christian Derntl

AbstractFungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Paul Primerano ◽  
Melani Juric ◽  
Robert Mach ◽  
Astrid Mach-Aigner ◽  
Christian Derntl

Abstract Background The filamentous ascomycete Trichoderma reesei is used for the industrial production of cellulases and holds the promise for heterologous gene expression due to its outstandingly high protein secretion rates and its long-term application in industry and science. A prerequisite for successful heterologous gene expression is the ability to insert a corresponding expression cassette at suitable loci in the genome of T. reesei. Results In this study, we test and demonstrate the applicability of the his1 gene [encoding for the ATP phosphoribosyltransferase (EC 2.4.2.17), part of the histidine biosynthesis pathway] and locus for targeted gene insertion. Deletion of the his1 promoter and a part of the coding region leads to histidine auxotrophy. Reestablishment of the his1 locus restores prototrophy. We designed a matching plasmid that allows integration of an expression cassette at the his1 locus. This is demonstrated by the usage of the reporter EYFP (enhanced yellow fluorescence protein). Further, we describe a minimal effort and seamless marker recycling method. Finally, we test the influence of the integration site on the gene expression by comparing three strains bearing the same EYFP expression construct at different loci. Conclusion With the establishment of his1 as integration locus and auxotrophic marker, we could expand the toolbox for strain design in T. reesei. This facilitates future strain constructions with the aim of heterologous gene expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lizhen Hu ◽  
Shuqi Guo ◽  
Xin Yan ◽  
Tianqing Zhang ◽  
Jing Xiang ◽  
...  

One-carbon (C1) substrates such as methane and methanol have been considered as the next-generation carbon source in industrial biotechnology with the characteristics of low cost, availability, and bioconvertibility. Recently, methanotrophic bacteria naturally capable of converting C1 substrates have drawn attractive attention for their promising applications in C1-based biomanufacturing for the production of chemicals or fuels. Although genetic tools have been explored for metabolically engineered methanotroph construction, there is still a lack of efficient methods for heterologous gene expression in methanotrophs. Here, a rapid and efficient electroporation method with a high transformation efficiency was developed for a robust methanotroph of Methylomicrobium buryatense 5GB1. Based on the homologous recombination and high transformation efficiency, gene deletion and heterologous gene expression can be simultaneously achieved by direct electroporation of PCR-generated linear DNA fragments. In this study, the influence of several key parameters (competent cell preparation, electroporation condition, recovery time, and antibiotic concentration) on the transformation efficiency was investigated for optimum conditions. The maximum electroporation efficiency of 719 ± 22.5 CFU/μg DNA was reached, which presents a 10-fold improvement. By employing this method, an engineered M. buryatense 5GB1 was constructed to biosynthesize isobutyraldehyde by replacing an endogenous fadE gene in the genome with a heterologous kivd gene. This study provides a potential and efficient strategy and method to facilitate the cell factory construction of methanotrophs.


Extremophiles ◽  
2021 ◽  
Author(s):  
Ilma Fauziah Ma’ruf ◽  
Yuka Sasaki ◽  
Anastasia Kerbs ◽  
Jochen Nießer ◽  
Yu Sato ◽  
...  

2021 ◽  
Author(s):  
Christian Fink ◽  
Sebastian Beblawy ◽  
Andreas M. Enkerlin ◽  
Lucas Mühling ◽  
Largus T. Angenent ◽  
...  

AbstractThermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis), because of their short doubling times and robust growth with high growth yields. Yet, a genetic system for these model microbes was missing despite intense work for four decades. Here, we report the establishment of tools for genetic modification of M. thermautotrophicus. We developed the modular Methanothermobacter vector system, which provided shuttle-vector plasmids (pMVS) with exchangeable selectable markers and replicons for both Escherichia coli and M. thermautotrophicus. For M. thermautotrophicus, a thermostable neomycin-resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The pMVS-plasmid DNA was transferred from E. coli into M. thermautotrophicus via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus, we demonstrated heterologous gene expression of a thermostable β-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assays, we found significantly different β-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus on formate as the sole growth substrate, while this was not possible for the empty vector control. These genetic tools provide the basis to investigate hypotheses from four decades of research on the physiology and biochemistry of Methanothermobacter spp. on a genetic level.Significance StatementThe world economies are facing permanently increasing energy demands. At the same time, carbon emissions from fossil sources need to be circumvented to minimize harmful effects from climate change. The power-to-gas platform is utilized to store renewable electric power and decarbonize the natural gas grid. The microbe Methanothermobacter thermautotrophicus is already applied as the industrial biocatalyst for the biological methanation step in large-scale power-to-gas processes. To improve the biocatalyst in a targeted fashion, genetic engineering is required. With our shuttle-vector system for heterologous gene expression in M. thermautotrophicus, we set the cornerstone to engineer the microbe for optimized methane production, but also for production of high-value platform chemicals in power-to-x processes.


2021 ◽  
Vol 89 (1-2) ◽  
pp. 103-116
Author(s):  
Julie Baker Phillips ◽  
David H. Ardell

AbstractThe evolution of tRNA multigene families remains poorly understood, exhibiting unusual phenomena such as functional conversions of tRNA genes through anticodon shift substitutions. We improved FlyBase tRNA gene annotations from twelve Drosophila species, incorporating previously identified ortholog sets to compare substitution rates across tRNA bodies at single-site and base-pair resolution. All rapidly evolving sites fell within the same metal ion-binding pocket that lies at the interface of the two major stacked helical domains. We applied our tRNA Structure–Function Mapper (tSFM) method independently to each Drosophila species and one outgroup species Musca domestica and found that, although predicted tRNA structure–function maps are generally highly conserved in flies, one tRNA Class-Informative Feature (CIF) within the rapidly evolving ion-binding pocket—Cytosine 17 (C17), ancestrally informative for lysylation identity—independently gained asparaginylation identity and substituted in parallel across tRNAAsn paralogs at least once, possibly multiple times, during evolution of the genus. In D. melanogaster, most tRNALys and tRNAAsn genes are co-arrayed in one large heterologous gene cluster, suggesting that heterologous gene conversion as well as structural similarities of tRNA-binding interfaces in the closely related asparaginyl-tRNA synthetase (AsnRS) and lysyl-tRNA synthetase (LysRS) proteins may have played a role in these changes. A previously identified Asn-to-Lys anticodon shift substitution in D. ananassae may have arisen to compensate for the convergent and parallel gains of C17 in tRNAAsn paralogs in that lineage. Our results underscore the functional and evolutionary relevance of our tRNA structure–function map predictions and illuminate multiple genomic and structural factors contributing to rapid, parallel and compensatory evolution of tRNA multigene families.


Sign in / Sign up

Export Citation Format

Share Document