Transposon Display: A Versatile Method for Transposon Tagging

Author(s):  
Michiel Vandenbussche ◽  
Jan Zethof ◽  
Tom Gerats
2006 ◽  
Vol 16 (1) ◽  
pp. 28-38
Author(s):  
Etsuko INOUE ◽  
Takuya YOSHIHIRO ◽  
Hideya KAWAJI ◽  
Akira HORIBATA ◽  
Masaru NAKAGAWA

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.


2002 ◽  
Vol 06 (24) ◽  
pp. 930-935 ◽  
Author(s):  
Chang-deok Han

Transposable elements are powerful mutagens. Along with genomic sequences, knock-out phenotypes and expression patterns are important information to elucidate the function of genes. In this review, I propose a strategy to develop tranposant lines on a large scale by combining genetic cross and tissue culture of Ac and Ds lines. Based on the facts that Ds tends to be inactive in F2 or later generation and Ds becomes reactivated via tissue culture, a large scale of transposants can be produced by tissue culture of seeds carrying Ac and inactive Ds. In this review, I describe limitations and considerations in operating transposon tagging systems in rice. Also, I discuss the efficiency of our gene trap system and technical procedures to clone Ds flanking DNA.


Author(s):  
Stephen L. Dellaporta ◽  
Irwin Greenblatt ◽  
Jerry L. Kermicle ◽  
James B. Hicks ◽  
Susan R. Wessler

Sign in / Sign up

Export Citation Format

Share Document