Runtime Verification: From Propositional to First-Order Temporal Logic

Author(s):  
Klaus Havelund ◽  
Doron Peled
Author(s):  
Alessandro Artale ◽  
Andrea Mazzullo ◽  
Ana Ozaki

Linear temporal logic over finite traces is used as a formalism for temporal specification in automated planning, process modelling and (runtime) verification. In this paper, we investigate first-order temporal logic over finite traces, lifting some known results to a more expressive setting. Satisfiability in the two-variable monodic fragment is shown to be EXPSPACE-complete, as for the infinite trace case, while it decreases to NEXPTIME when we consider finite traces bounded in the number of instants. This leads to new complexity results for temporal description logics over finite traces. We further investigate satisfiability and equivalences of formulas under a model-theoretic perspective, providing a set of semantic conditions that characterise when the distinction between reasoning over finite and infinite traces can be blurred. Finally, we apply these conditions to planning and verification.


1988 ◽  
Vol 11 (1) ◽  
pp. 49-63
Author(s):  
Andrzej Szalas

In this paper we deal with a well known problem of specifying abstract data types. Up to now there were many approaches to this problem. We follow the axiomatic style of specifying abstract data types (cf. e.g. [1, 2, 6, 8, 9, 10]). We apply, however, the first-order temporal logic. We introduce a notion of first-order completeness of axiomatic specifications and show a general method for obtaining first-order complete axiomatizations. Some examples illustrate the method.


1997 ◽  
Vol 4 (8) ◽  
Author(s):  
Jesper G. Henriksen ◽  
P. S. Thiagarajan

A simple extension of the propositional temporal logic of linear<br />time is proposed. The extension consists of strengthening the until<br />operator by indexing it with the regular programs of propositional<br />dynamic logic (PDL). It is shown that DLTL, the resulting logic, is<br />expressively equivalent to S1S, the monadic second-order theory<br />of omega-sequences. In fact a sublogic of DLTL which corresponds<br />to propositional dynamic logic with a linear time semantics is<br />already as expressive as S1S. We pin down in an obvious manner<br />the sublogic of DLTL which correponds to the first order fragment<br />of S1S. We show that DLTL has an exponential time decision<br />procedure. We also obtain an axiomatization of DLTL. Finally,<br />we point to some natural extensions of the approach presented<br />here for bringing together propositional dynamic and temporal<br />logics in a linear time setting.


Sign in / Sign up

Export Citation Format

Share Document