Applying Big Data Intelligence for Real Time Machine Fault Prediction

Author(s):  
Amrit Pal ◽  
Manish Kumar
Author(s):  
Dihia Boulegane ◽  
Nedeljko Radulovic ◽  
Albert Bifet ◽  
Ghislain Fievet ◽  
Jimin Sohn ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 925-939 ◽  
Author(s):  
John Oyekan ◽  
Axel Fischer ◽  
Windo Hutabarat ◽  
Christopher Turner ◽  
Ashutosh Tiwari

Purpose The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line improvements to achieve flexible manufacturing. As Industry 4.0 requires “big data”, it is accepted that computer vision could be one of the tools for its capture and efficient analysis. RGB-D data gathered from real-time machine vision systems such as Kinect ® can be processed using computer vision techniques. Design/methodology/approach This research exploits RGB-D cameras such as Kinect® to investigate the feasibility of using computer vision techniques to track the progress of a manual assembly task on a production line. Several techniques to track the progress of a manual assembly task are presented. The use of CAD model files to track the manufacturing tasks is also outlined. Findings This research has found that RGB-D cameras can be suitable for object recognition within an industrial environment if a number of constraints are considered or different devices/techniques combined. Furthermore, through the use of a HMM inspired state-based workflow, the algorithm presented in this paper is computationally tractable. Originality/value Processing of data from robust and cheap real-time machine vision systems could bring increased understanding of production line features. In addition, new techniques that enable the progress tracking of manual assembly sequences may be defined through the further analysis of such visual data. The approaches explored within this paper make a contribution to the utilisation of visual information “big data” sets for more efficient and automated production.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


2020 ◽  
Vol 17 (4) ◽  
pp. 2007-2023
Author(s):  
Sarah Wassermann ◽  
Michael Seufert ◽  
Pedro Casas ◽  
Li Gang ◽  
Kuang Li

2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

2021 ◽  
pp. 100489
Author(s):  
Paul La Plante ◽  
P.K.G. Williams ◽  
M. Kolopanis ◽  
J.S. Dillon ◽  
A.P. Beardsley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document