graph optimization
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 111)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Linlin Xia ◽  
Ruimin Liu ◽  
Daochang Zhang ◽  
Jingjing Zhang

Abstract Polarized skylight is as fundamental a constituent of passive navigation as geomagnetic field. In regards to its applicability to outdoor robot localization, a polarized light-aided VINS (abbreviates ‘visual-inertial navigation system’) modelization dedicated to globally optimized pose estimation and heading correction is constructed. The combined system follows typical visual SLAM (abbreviates ‘simultaneous localization and mapping’) frameworks, and we propose a methodology to fuse global heading measurements with visual and inertial information in a graph optimization based estimator. With ideas of ‘new-added attribute of each vertex and heading error encoded constraint edges’, the heading, as absolute orientation reference, is estimated by Berry polarization model and continuously updated in a graph structure. The formulized graph optimization process for multi-sensor fusion is simultaneously provided. In terms of campus road experiments on Bulldog-CX Robot platform, results are compared against purely stereo camera-dependent and VINS Fusion frameworks, revealing our design is substantially more accurate than others with both locally and globally consistent position and attitude estimates. As essentially passive, anatomically coupled and drifts calibratable navigation mode, the polarized light-aided VINS may therefore be considered as a tool candidate for a class of visual SLAM based multi-sensor fusion.


2021 ◽  
Vol 12 (4) ◽  
pp. 261
Author(s):  
Chuanwei Zhang ◽  
Lei Lei ◽  
Xiaowen Ma ◽  
Rui Zhou ◽  
Zhenghe Shi ◽  
...  

In order to make up for the shortcomings of independent sensors and provide more reliable estimation, a multi-sensor fusion framework for simultaneous localization and mapping is proposed in this paper. Firstly, the light detection and ranging (LiDAR) point cloud is screened in the front-end processing to eliminate abnormal points and improve the positioning and mapping accuracy. Secondly, for the problem of false detection when the LiDAR is surrounded by repeated structures, the intensity value of the laser point cloud is used as the screening condition to screen out robust visual features with high distance confidence, for the purpose of softening. Then, the initial factor, registration factor, inertial measurement units (IMU) factor and loop factor are inserted into the factor graph. A factor graph optimization algorithm based on a Bayesian tree is used for incremental optimization estimation to realize the data fusion. The algorithm was tested in campus and real road environments. The experimental results show that the proposed algorithm can realize state estimation and map construction with high accuracy and strong robustness.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zou Zhou ◽  
Guoli Zhang ◽  
Fei Zheng ◽  
Tuyang Wang ◽  
Longjie Chen ◽  
...  

Robots can use echo signals for simultaneous localization and mapping (SLAM) services in unknown environments where its own camera is not available. In current acoustic SLAM solutions, the time of arrival (TOA) in the room impulse response (RIR) needs to be associated with the corresponding reflected wall, which leads to an echo labelling problem (ELP). The position of the wall can be derived from the TOA associated with the wall, but most of the current solutions ignore the effect of the cumulative error in the robot’s moving state measurement on the wall position estimation. In addition, the estimated room map contains only the shape information of the room and lacks position information such as the positions of doors and windows. To address the above problems, this paper proposes a graph optimization-based acoustic SLAM edge computing system offering centimeter-level mapping services with reflector recognition capability. In this paper, a robot equipped with a sound source and a four-channel microphone array travels around the room, and it can collect the room impulse response at different positions of the room and extract the RIR cepstrum feature from the room impulse response. The ELP is solved by using the RIR cepstrum to identify reflectors with different absorption coefficients. Then, the similarity of the RIR cepstrum vectors is used for closed-loop detection. Finally, this paper proposes a method to eliminate the cumulative error of robot movement by fusing IMU data and acoustic echo data using graph-optimized edge computation. The experiments show that the acoustic SLAM system in this paper can accurately estimate the trajectory of the robot and the position of doors, windows, and so on in the room map. The average self-localization error of the robot is 2.84 cm, and the mapping error is 4.86 cm, which meet the requirement of centimeter-level map service.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012026
Author(s):  
J C Ho ◽  
S K Phang ◽  
H K Mun

Abstract Unmanned aerial vehicle (UAV) is widely used by many industries these days such as militaries, agriculture, and surveillance. However, one of the main challenges of UAV is navigating through an environment where global positioning system (GPS) is being denied. The main purpose of this paper is to find a solution for UAV to be able to navigate in a GPS denied surrounding without affecting the drone flight performance. There are two ways to overcome these challenges such as using visual odometry (VO) or by using simultaneous localization and mapping (SLAM). However, VO has a drawback because camera sensors require good lighting which will affect the performance of the UAV when it is navigating through a low light intensity environment. Hence, in this paper 2-D SLAM will be use as a solution to help UAV to navigate under a GPS-denied environment with the help of a light detection and ranging (LIDAR) sensor which known as a LIDAR-based SLAM. This is because SLAM can help UAVs to localize itself and map the surrounding of the environment. The concept and idea of this paper will be fully simulated using MATLAB, where the drone navigation will be simulated in MATLAB to extract LIDAR data and to use the LIDAR data to carry out SLAM via pose graph optimization. Besides, the contribution to this research work has also identified that in pose graph optimization, the loop closure threshold and loop closure radius play an important role. The loop closure threshold can affect the accuracy of the trajectory of the drone and the accuracy of mapping the environment as compared to ground truth. On the other hand, the loop closure search radius can increase the processing speed of obtaining the data via pose graph optimization. The main contribution to this research work is shown that the processing speed can increase up to 45 % and the accuracy of the trajectory of the drone and the mapped surrounding is quite accurate as compared to ground truth.


2021 ◽  
Author(s):  
Yan Wang ◽  
Jian Kuang ◽  
xiaoji niu

<div>The 3D position estimation of pedestrians is a vital problem in the development of virtual reality, augmented reality, and the internet of things. The learning-based inertial odometry is a very potential auxiliary method of pedestrian positioning due to its low position drift and immunity to external environmental influences. However, in many cases, the drift error of the heading is still the main factor that causes the rapid divergence of the position estimated by the learning based inertial odometry. This paper proposed a graph optimization-based estimation method to fusing learned based inertial odometry and magnetometer measurements for obtaining lower drift position. The proposed algorithm does not need to calibrate the magnetometer bias, and effectively resist the influence of magnetic interference in the indoor environment, and can provide a very reliable absolute magnetic heading correction. Test results show that the proposed method can obtain better positioning performance than other methods using calibrated magnetometer observations.</div>


2021 ◽  
Author(s):  
Yan Wang ◽  
Jian Kuang ◽  
xiaoji niu

<div>The 3D position estimation of pedestrians is a vital problem in the development of virtual reality, augmented reality, and the internet of things. The learning-based inertial odometry is a very potential auxiliary method of pedestrian positioning due to its low position drift and immunity to external environmental influences. However, in many cases, the drift error of the heading is still the main factor that causes the rapid divergence of the position estimated by the learning based inertial odometry. This paper proposed a graph optimization-based estimation method to fusing learned based inertial odometry and magnetometer measurements for obtaining lower drift position. The proposed algorithm does not need to calibrate the magnetometer bias, and effectively resist the influence of magnetic interference in the indoor environment, and can provide a very reliable absolute magnetic heading correction. Test results show that the proposed method can obtain better positioning performance than other methods using calibrated magnetometer observations.</div>


Sign in / Sign up

Export Citation Format

Share Document