Efficient Inter-process Communication in Parallel Implementation of Grid-Characteristic Method

Author(s):  
Andrey M. Ivanov ◽  
Nikolay I. Khokhlov
Author(s):  
Bhushana Samyuel Neelam ◽  
Benjamin A Shimray

: The ever-increasing dependency of the utilities on networking brought several cyber vulnerabilities and burdened them with dynamic networking demands like QoS, multihoming, and mobility. As the existing network was designed without security in context, it poses several limitations in mitigating the unwanted cyber threats and struggling to provide an integrated solution for the novel networking demands. These limitations resulted in the design and deployment of various add-on protocols that made the existing network architecture a patchy and complex network. The proposed work introduces one of the future internet architectures, which seem to provide abilities to mitigate the above limitations. Recursive internetworking architecture (RINA) is one of the future internets and appears to be a reliable solution with its promising design features. RINA extended inter-process communication to distributed inter-process communication and combined it with recursion. RINA offered unique inbuilt security and the ability to meet novel networking demands with its design. It has also provided integration methods to make use of the existing network infrastructure. The present work reviews the unique architecture, abilities, and adaptability of RINA based on various research works of RINA. The contribution of this article is to expose the potential of RINA in achieving efficient networking solutions among academia and industry.


Author(s):  
Amanda Bienz ◽  
William D Gropp ◽  
Luke N Olson

Algebraic multigrid (AMG) is often viewed as a scalable [Formula: see text] solver for sparse linear systems. Yet, AMG lacks parallel scalability due to increasingly large costs associated with communication, both in the initial construction of a multigrid hierarchy and in the iterative solve phase. This work introduces a parallel implementation of AMG that reduces the cost of communication, yielding improved parallel scalability. It is common in Message Passing Interface (MPI), particularly in the MPI-everywhere approach, to arrange inter-process communication, so that communication is transported regardless of the location of the send and receive processes. Performance tests show notable differences in the cost of intra- and internode communication, motivating a restructuring of communication. In this case, the communication schedule takes advantage of the less costly intra-node communication, reducing both the number and the size of internode messages. Node-centric communication extends to the range of components in both the setup and solve phase of AMG, yielding an increase in the weak and strong scaling of the entire method.


Sign in / Sign up

Export Citation Format

Share Document