Verification and Validation for a Finite Element Model of a Hyperloop Pod Space Frame

Author(s):  
Vignesh Jayakumar ◽  
T. S. Indraneel ◽  
Rohan Chawla ◽  
Sudeshna Mohanty ◽  
Shishir Shetty ◽  
...  
2014 ◽  
Vol 660 ◽  
pp. 773-777
Author(s):  
Mohd Shukri Yob ◽  
Shuhaimi Mansor ◽  
Razali Sulaiman

Thin walled structure is widely used in designing light weight vehicle. For automotive industry, weight is an important characteristic to increase performance of a vehicle. Vehicle structures are built from thin walled beams by joining them using various joining methods and techniques. For a structure, its stiffness greatly depends on joint stiffness. However, stiffness of thin walled beam is difficult to predict accurately due to buckling effect. Once the beams are joined to form a structure, it will expose to joint flexibility effect. A lot of researches had been done to predict the behaviors of thin walled joint analytically and numerically. However, these methods failed to come out with satisfactory result. In this research work, finite element model for 3D space frame thin walled structural joint is developed using circular beam element by validating with experimental result. Another finite element model using rigid element is used to represent 3D space frame behavior without joint effect. The difference between these 2 models is due to joint effect. By using same modelling technique, joint stiffness for different sizes can be established. Then, the relation between joint stiffness for 3D space frame and size of beam can be obtained.


2012 ◽  
Author(s):  
Dapeng Zhu ◽  
Chia-Hung Fang ◽  
Chunhee Cho ◽  
Jiajie Guo ◽  
Yang Wang ◽  
...  

1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document