interference fit
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 109)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 757
Author(s):  
Xiaofeng Wang ◽  
Baochang Liu ◽  
Jiaqi Yun ◽  
Xueqi Wang ◽  
Haoliang Bai

The connection between the steel joint and aluminum alloy pipe is the weak part of the aluminum alloy drill pipe. Practically, the interference connection between the aluminum alloy rod and the steel joint is usually realized by thermal assembly. In this paper, the relationship between the cooling water flow rate, initial heating temperature and the thermal deformation of the steel joint in interference thermal assembly was studied and predicted. Firstly, the temperature data of each measuring point of the steel joint were obtained by a thermal assembly experiment. Based on the theory of thermoelasticity, the analytical solution of the thermal deformation of the steel joint was studied. The temperature function was fitted by the least square method, and the calculated value of radial thermal deformation of the section was finally obtained. Based on the BP neural network algorithm, the thermal deformation of steel joint section was predicted. Besides, a prediction model was established, which was about the relationship between cooling water flow rate, initial heating temperature and interference. The magnitude of interference fit of steel joint was predicted. The magnitude of the interference fit of the steel joint was predicted. A polynomial model, exponential model and Gaussian model were adopted to predict the sectional deformation so as to compare and analyze the predictive performance of a BP neural network, among which the polynomial model was used to predict the magnitude of the interference fit. Through a comparative analysis of the fitting residual (RE) and sum of squares of the error (SSE), it can be known that a BP neural network has good prediction accuracy. The predicted results showed that the error of the prediction model increases with the increase of the heating temperature in the prediction model of the steel node interference and related factors. When the cooling water velocity hit 0.038 m/s, the prediction accuracy was the highest. The prediction error increases with the increase or decrease of the velocity. Especially when the velocity increases, the trend of error increasing became more obvious. The analysis shows that this method has better prediction accuracy.


Author(s):  
Fatih Güven

Gears mounted on a shaft via interference fit are the subject of an internal pressure which is essential for power transmission between gear and shaft. The pressure between shaft and gear is responsible for additional stresses occurring both in shaft and gear. This study examines the effect of stresses arising due to the interference on the crack growth that exists at the root of the gear tooth. The numerical analyses were conducted on models having different rim thicknesses by using the extended finite element method that allows mesh-independent crack modeling and does not need re-meshing. The results showed that internal pressure yields additional stresses in the tangential direction. The increment in tangential stress changed the location and intensity of the maximal 1st principal stress and accelerated crack growth. As the tightness of the fit increased, the crack turned towards the rim rather than towards the tooth. As the crack growth through the rim may cause a catastrophic failure of gear, the increment in tangential stress due to internal pressure is crucial for the fatigue life of the gear.


Author(s):  
Анатолий Александрович Буренин ◽  
Анастасия Валерьевна Ткачева

На примере составного диска, созданного посредством операции горячей посадки, изучается прочность такого соединения на отрыв. Отрывные усилия создаются в качестве центробежных инерционных сил при вращении диска относительное его центральной оси. Показывается, что созданный натяг в сборке имеет выраженную тенденцию к уменьшению. Однако для его обнуления необходимы достаточно значительные угловые скорости вращения. Приведен пример расчета придельной угловой скорости в зависимости от первоначального нагрева охватывающей детали сборки, термомеханических свойств материала сборки и геометрических параметров итоговой конструкции. Подобные расчеты в снижающемся натяге совершенно необходимы, когда эксплуатационные условия требуют принять вращение составного диска в качестве части его функциональных обязанностей. On the example of a composite disk, created by means of a hot-fit operation, the pulloff strength of such a disk is studied. separation forces as centrifugal forces with relative rotation of its central axis. It is shown that the created interference fit in the assembly has a pronounced tendency to decrease. However, for vanishing, sufficiently significant angular velocities of rotation are required. An example of calculating the near-limit angular velocity, depending on the original covered part of the assembly, of the thermomechanical properties of the material and the geometric characteristics of the final structure is given. Such computations in decreasing interference are essential when operating conditions require the rotation of the composite disc to be accepted as part of its functionality.


2021 ◽  
Vol 11 (23) ◽  
pp. 11428
Author(s):  
Jerzy Madej ◽  
Mateusz Śliwka

Interference fit joints have been widely used in many engineering constructions, in particular in electric motors. It is of particular importance to calculate the load capacity of press-fit joints, especially in the overload ranges of construction to estimate the safety factor. The article presents a FEM numerical simulation of pressing the shaft into the hub, taking into account various types of fits. The results of numerical simulations presented in the article were positively verified with the MTS measuring device, which confirmed the correctness of the numerical model. So far, the load-bearing capacity of press-fit joints has been calculated from Lame’s formulas. The results of the load capacity of the joints obtained by the FEM simulation were compared with the results obtained from Lame’s formula. The comparison shows that when designing interference fit joints, attention should be paid to the fact that the press-in process, depending on the type of fit, may be elastic-plastic. Plastic deformations in the contact zone of the joint affect its load-bearing capacity. Therefore, the design of press-fit joints should not be based on Lame’s formulas, which do not take into account the range of plastic work of the material.


2021 ◽  
Vol 160 ◽  
pp. 107919
Author(s):  
Elvio Bonisoli ◽  
Gabriele Marcuccio ◽  
Simone Venturini

Mechanika ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 400-407
Author(s):  
Pei Fengque ◽  
Tong Yifei ◽  
Yuan Minghai ◽  
Song Haojie

With the development of intelligent manufacturing, the key strategic of complex equipment is becoming more and more obvious. How to realize the assembly of complex products has become the focus of intelligent manufacturing. This paper puts forward the improved Taguchi method to dimension chains measures, by using different quality loss function to different dimension chains, the cores are the Nominal-is-best, non-core is measured with the improved Smaller-is-better to improve convergence perusal and increase matching rate; General adopt Smaller-is-better to enhance assembly accuracy, reduce interference fit and assembly cost. Then the dimension chains quantitative model of complicated product assembly by using the signal-to-noise ratio and different weights is built up. The model contains modeling assumption, the objective function and the matching model. And this model is regard as the fitness function of genetic algorithm. Finally, the feasibility and efficiency of the scheme are verified by the case study.


Author(s):  
Ke Ning ◽  
Jianmei Wang ◽  
Dan Xiang ◽  
Dingbang Hou

This paper proposes the theoretical model of a multilayer interference fit and gives out the relational expression between radial interference and friction coefficient. Taking the typical wind turbine's shrink disk of a three-layer interference fit structure as an example, special experimental equipment is developed to test the torque capacity. Based on experimental results and the theoretical model, the mathematical expressions of radial interference and assembly stroke for friction coefficient are obtained by polynomial fitting, and the prediction model of friction coefficient is established. The three-dimensional finite element model of a shrink disk is constructed by applying the friction coefficient prediction model. With the mathematical expressions of radial interference and assembly stroke for the torque capacity, the rules of main dimension parameters and torque capacity are analyzed. The maximum relative error between experiment and simulation is 8.2%, which shows the feasibility of finite element simulation. The results of our study have certain guidance for the prediction of friction coefficient and the manufacture of the multilayer interference fit.


2021 ◽  
pp. 002199832110417
Author(s):  
Yuan Yang ◽  
Peng Zou ◽  
Xilin Dai ◽  
Bo Yang ◽  
Feng Gao

Because of the excellent static and fatigue performance, the interference-fit bolted structure has a wide application prospect in the joint field. In this paper, an improved spring-mass stiffness analytical prediction model is established for the interference-fit bolted single-lap laminated composite structure. The influences of interference-fit percentage, bolt preload, secondary bending and interface frictions are considered in the model. Combined with experimental research, the value of secondary bending moment coefficient ε is studied, and the correctness of the analytical model is verified. Based on the improved stiffness model, parametric research and regression analysis on the interference-fit percentage, preload, friction, laminate width and material properties are carried out and show that the overall structure stiffness is obviously affected by ε value, laminate width and laminates properties. The stiffness decreases with the increase of ε and increases with the increase of laminate width. And as the key factors, the interference-fit percentage mainly affects the joint local friction and bolt shear stiffness, the preload and friction coefficient mainly affect the local friction, and the laminates sizes and properties directly affect the overall structural stiffness.


Sign in / Sign up

Export Citation Format

Share Document