Wind Tunnels: Design Considerations in Wind Tunnel Testing of Cyclists

Author(s):  
Len W. Brownlie
2012 ◽  
Vol 32 (8-9) ◽  
pp. 575-584 ◽  
Author(s):  
Saeed Daneshmand ◽  
Cyrus Aghanajafi ◽  
Hossein Shahverdi

Abstract Nowadays, several procedures are used for manufacturing wind tunnel models. These methods include machining, casting, molding and rapid prototyping. Raw materials such as metals, ceramics, composites and plastics are used in making these models. Dimension accuracy, surface roughness and material strength are significant parameters which are effective in wind tunnel manufacturing and testing. Wind tunnel testing may need several models. Traditional methods for constructing these models are both costly and time consuming. In this research, a study has been undertaken to determine the suitability of models constructed using rapid manufacturing (RM) methods for use in wind tunnel testing. The aim of this research is to improve the surface roughness, dimensional accuracy and material strength of rapid manufacturing models for testing in wind tunnels. Consequently, the aerodynamic characteristics of three models were investigated and compared. The first model is made of steel, the second model from FDM-M30, and the third model is a hybrid model. Results show that metal models can be replaced by hybrid models in order to measure aerodynamic characteristics, reduce model fabrication time, save fabrication cost and also to verify the accuracy of aerodynamic data obtained in aerospace industry.


1998 ◽  
Author(s):  
William Schoenfeld ◽  
Francis Priolo

2020 ◽  
Vol 53 (2) ◽  
pp. 12638-12643
Author(s):  
Michael Sinner ◽  
Vlaho Petrović ◽  
Frederik Berger ◽  
Lars Neuhaus ◽  
Martin Kühn ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3241
Author(s):  
Gianmarco Battista ◽  
Paolo Chiariotti ◽  
Milena Martarelli ◽  
Paolo Castellini ◽  
Claudio Colangeli ◽  
...  

Localization and quantification of noise sources are important to fulfill customer and regulation requirements in a such competitive sector like automotive manufacturing. Wind tunnel testing and acoustic mapping techniques based on microphone arrays can provide accurate information on these aspects. However, it is not straightforward to get source positions and strengths in these testing conditions. In fact, the car is a 3D object that radiates noise from different parts simultaneously, involving different noise generation mechanisms such as tire noise and aerodynamic noise. Commonly, acoustic maps are produced on a 3D surface that envelopes the objects. However, this practice produces misleading and/or incomplete results, as acoustic sources can be generated outside the surface. When the hypothesis of sources on the model surface is removed, additional issues arise. In this paper, we propose exploiting an inverse method tailored to a volumetric approach. The aim of this paper is to investigate the issues to face when the method is applied to automotive wind tunnel testing. Two different kinds of problem must be considered: On the one hand, the results of inverse methods are strongly influenced by the problem definition, while, on the other hand, experimental conditions must be taken into account to get accurate results. These aspects have been studied making use of simulated experiments. Such a controlled simulation environment, by contrast to a purely experimental case, enables accurate assessment of both the localization and quantification performance of the proposed method. Finally, a set of scores is defined to evaluate the resulting maps with objective metrics.


Sign in / Sign up

Export Citation Format

Share Document