Higher-Order Kinematics of Rigid Bodies. A Tensors Algebra Approach

Author(s):  
Daniel Condurache
2001 ◽  
Vol 6 (6) ◽  
pp. 631-640 ◽  
Author(s):  
Panayiotis Papadopoulos
Keyword(s):  

2006 ◽  
Vol 129 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Yi Zhang ◽  
Kwun-Lon Ting

This paper presents a study on the higher-order motion of point-lines embedded on rigid bodies. The mathematic treatment of the paper is based on dual quaternion algebra and differential geometry of line trajectories, which facilitate a concise and unified description of the material in this paper. Due to the unified treatment, the results are directly applicable to line motion as well. The transformation of a point-line between positions is expressed as a unit dual quaternion referred to as the point-line displacement operator depicting a pure translation along the point-line followed by a screw displacement about their common normal. The derivatives of the point-line displacement operator characterize the point-line motion to various orders with a set of characteristic numbers. A set of associated rigid body motions is obtained by applying an instantaneous rotation about the point-line. It shows that the ISA trihedrons of the associated rigid motions can be simply depicted with a set of ∞2 cylindroids. It also presents for a rigid body motion, the locus of lines and point-lines with common rotation or translation characteristics about the line axes. Lines embedded in a rigid body with uniform screw motion are presented. For a general rigid body motion, one may find lines generating up to the third order uniform screw motion about these lines.


2020 ◽  
Author(s):  
Chang Wang ◽  
Tieshi Zhao ◽  
Erwei Li ◽  
Yanzhi Zhao ◽  
Hui Bian ◽  
...  

Abstract Higher-order kinematics of mechanisms has been applied in servo motor control, human-robot interaction and machinery life design fields, etc. The representations of acceleration and jerk by screws have been fully developed by researchers with the methods of the differential of the matrix representation of SE(3) group. Clifford algebra, which is tighter and with higher computational efficiency than the matrix method, is another representation of the motions of rigid bodies. It has been used in position kinematics, grub task motion planning, and robot vision for its convenience of geometric representations and calculations. As far as we know, the work of higher-order kinematics of mechanisms based on Clifford algebra is rare. First, after recalling the based theory of motion representation in conformal geometric algebra (CGA), the mathematical relationships between flag and motor are built. Second, a method for the higher-order kinematics modeling of serial chain mechanisms is proposed. Finally, the higher-order kinematics of the 3-RRS parallel mechanism is built to prove the correctness of the algorithm. This work further enriches the application of CGA for the higher-order kinematics modeling of parallel mechanisms.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Sign in / Sign up

Export Citation Format

Share Document