kinematics modeling
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 46)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Zheng Zhang ◽  
Linghui Hu ◽  
Xiuhong Li ◽  
Xinyu Hu

In-pipe cleaning robots often need to carry cleaning tools, and their tails are connected with cables such as water pipes and air pipes. Especially when cleaning vertical straight pipes and curved pipes, a greater traction is required. Therefore, a new type of screw drive in-pipe cleaning robot was designed in this paper. The robot solves the problems of small traction, complex structure, and unstable motion of the in-pipe cleaning robot. The kinematics modeling was carried out on the screw drive in-pipe cleaning robot’s screw module for generating traction, and the force analysis was performed on this basis. The function model of the torque, air pressure, and traction of the screw module was established, which was verified by the simulation and experiment. The results show that the screw in-pipe cleaning robot has a large traction, stable operation, and can be well adapted to the vertical straight pipes and curved pipes.


2022 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Pengpeng Wang ◽  
Haixia Gong ◽  
Liquan Wang ◽  
Feihong Yun ◽  
Yibo Nan ◽  
...  

A deep-water bolt flange automatic connection tool plays a very important role in the process of offshore oil exploitation and transportation. In the connection process, the alignment error of bolts and nuts is the key factor to ensure the connection process is successful. Using the kinematics modeling method, this paper created the alignment error model of the deep-water bolt flange automatic connection tool and analyzed the influence of manufacturing accuracy on the alignment error of bolts and nuts through computer simulation software. Based on the error matching design method, the manufacturing accuracy of parts were optimized with a part-size-based priority sequence to ensure the bolt–nut alignment error was within the allowable limits. The land tests, the pool tests and the sea test were carried out. The test results showed that the bolt and nut can be connected in the subsea environment reliably.


Author(s):  
Hongbo Liu ◽  
Dexu Geng

To solve the complex structure, poor flexibility, and heavyweight of the rigid robotic hand, a pneumatic four-finger flexible robotic hand is developed in this paper. The robotic hand is about 1.3 times as large as that of a human hand and each finger is composed of a single multi-drive bending joint. The kinematic model of the robotic hand is established by using homogeneous coordinate transformation matrix. Through the simulation experiment of the robotic hand structure, the trajectory, and workspace of the robotic hand are established. According to the experimental results of grasping performance of the robotic hand, the grasping forces of different geometric positions along the finger axis are obtained. The results show that the robotic hand can realize a variety of grasping modes, has flexible action and strong adaptive ability; it can grasp, hold, and pinch, as well as stably grasp objects such as cylinder, box, and sphere. In pinch grasp mode, the robotic hand can grip objects as thin as 1 mm and the diameter of the grasped object varies from 28 mm to 160 mm; the maximum mass that the robotic hand can grasp an object with a diameter of 90 mm under 0.35 MPa is 1386 g.


Author(s):  
Ahmad Abdullah ◽  
Zareena Kausar ◽  
Haroon Raza ◽  
Abdullah Siddiqui ◽  
Neelum Yousaf ◽  
...  

Stability plays a vital role in any robotic system. Its significance increases in systems related to health and medicine. For rehabilitation devices meant for Spinal Cord Injury (SCI) patients, stability is crucial and key element in ensuring patient safety and the usefulness of the devices. In this study, kinematics, force analysis, and the static tip-over stability of a device for rehabilitation of paraplegic patients is discussed. Kinematics modeling and static force analysis provide critical information about position and loading at different points on the device. Force-Angle Stability Criterion is used to find the static tip-over stability of the device while the patient is on board the device. The Criterion relies on the support boundary, tip-over mode axes, and the Center of Mass (COM) of the complete system. The Criterion is sensitive to the COM position and therefore is more suitable for the application. The linear actuator mounted on the device causes the end effector of the device to move. The patient, strapped with the end effector, in turn moves from sitting position to standing position. The study focuses on the analysis of stability based on changing COM during this motion. The results verify that although the system is well within the stability bounds, it is more stable as it moves from sitting position to standing position.


2021 ◽  
Author(s):  
Weiqun Wang ◽  
Xiru Wang ◽  
Zeng-Guang Hou ◽  
Zhijie Fang ◽  
Yuze Jiao ◽  
...  

2021 ◽  
Vol 21 (2) ◽  
pp. 118-129
Author(s):  
Hasan Dawood Salman ◽  
Mohsin Noori Hamzah ◽  
Sadeq Hussein Bakhy

The kinematics modeling of the robot arm plays an important role in robot control. This paper presents the kinematic model of a three-degree of freedom articulated robot arm, which is designed for picking and placing an application with hand gripper, where a robot has been manufactured for that purpose. The forward kinematic model has been presented in order to determine the end effector’s poses using the Denavit-Hartenberg (DH) convention. For inverse kinematics, an algebraic solution based on trigonometric formulas mixed with geometric method was adopted for a 3 DOF modular manipulator taking into account the existence of a shoulder offset. MATLAB software was used as a tool to simulate and implement the motional characteristics of the robot arm, by creating a 3D visual software package under designing a Graphical User Interface "GUI" with a support simulation from robotic Toolbox (Rtb 10.3). Finally, an electronic interfacing circuit between the GUI program and the robot arm was developed using Arduino microcontroller to control the robot motion. The presented work can be applicable for learning the reality interface design methodology of the other kinds of robot manipulators and achieve a suitable solution for the motional characteristics


Author(s):  
Duong Xuan Bien ◽  
Pham Quoc Hoang ◽  
Le Xuan Hung ◽  
Do Manh Tung ◽  
Nguyen Tai-Hoai Thanh ◽  
...  

The trend of scientific development in the future cannot fail to mention the great influence of the space field, but in the immediate future, the observational satellite systems are related to communication technology. In fact, in some countries with strong development of communication technology and space technology, the mechanical system of geostationary satellite monitoring antennas has certainly been thoroughly resolved. However, because of a specific technology, the sharing and transferring of design and manufacturing technology to developing countries is a great challenge. It is almost difficult to find published works related to mechanical design calculation and manufacture of geostationary satellite monitoring antenna systems. The problem of proactive grasping of technology, step by step autonomy in manufacturing technology of telecommunications equipment related to space technology has always been the goal of developing countries like Vietnam to limit technology dependence, minimizing technology transfer costs, ensuring national security. The first step in these problems is the autonomous construction of terrestrial transceivers such as geostationary satellite monitoring antennas. This paper presents the kinematics modeling analysis of the mechanical system of the geostationary satellite monitoring antenna. Each component of the antenna system is assumed a rigid body. The mathematical model is built based on multi-bodies kinematics and dynamics theory. The DENAVIT-HARTENBERG (D-H) homogeneous matrix method was used to construct the kinematics equations. The forward kinematics problem is analyzed to determine the position, velocity, acceleration, and workspace of the antenna system with given system motion limits. The inverse kinematics problem is mentioned to determine the kinematics behaviors of the antenna system with a given motion path in the workspace. The numerical simulation results kinematics were successfully applied in practice, especially for dynamics and control system analysis of geostationary satellite antenna systems.


SINERGI ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 217
Author(s):  
Tresna Dewi ◽  
Citra Anggraini ◽  
Pola Risma ◽  
Yurni Oktarina ◽  
Muslikhin Muslikhin

As robots' use increases in every sector of human life, the demand for cheap and efficient robots has also enlarged. The use of two or more simple robot is preferable to the use of one sophisticated robot. The agriculture industry can benefit from installing a robot, from seeding to the packaging of the product. A precise analysis is required for the installation of two collaborative robots. This paper discusses the motion control analysis of two collaborative arms robots in the fruit packaging system. The study begins with the relative motion analysis between two robots, starting with kinematics modeling, image processing for object detection, and the Fuzzy Logic Controller's design to show the relationship between the robot inputs and outputs. The analysis is carried out using SCILAB, open-source software for numerical computing engineering. This paper is intended as the initial analysis of the feasibility of the real experimental system.


Sign in / Sign up

Export Citation Format

Share Document