Response of Ecological Water Supply Service to Land Cover Change in the Source Area of the Yellow River

Author(s):  
Aihong Gai ◽  
Liping Di ◽  
Junmei Tang ◽  
Liying Guo ◽  
Huihui Kang
Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1080
Author(s):  
Bo Liu ◽  
Libo Pan ◽  
Yue Qi ◽  
Xiao Guan ◽  
Junsheng Li

Land use and land cover change is an important driving force for changes in ecosystem services. We defined several important human-induced land cover change processes such as Ecological Restoration Project, Cropland Expansion, Land Degradation, and Urbanization by the land use / land cover transition matrix method. We studied human-induced land cover changes in the Yellow River Basin from 1980 to 2015 and evaluated its impact on ecosystem service values by the benefit transfer method and elasticity coefficient. The results show that the cumulative area of human-induced land cover change reaches 65.71 million ha from 1980 to 2015, which is close to the total area of the Yellow River Basin. Before 2000, Ecological Restoration Project was the most important human-induced land cover change process. However, due to the large amount of cropland expansion and land degradation, the area of natural vegetation was reduced and the ecosystem value declined. Since 2000, due to the implementation of the "Grain for Green" program, the natural vegetation of upstream area and midstream area of Yellow River Basin has been significantly improved. This implies that under an appropriate policy framework, a small amount of human-induced land cover change can also improve ecosystem services significantly.


2022 ◽  
Vol 176 ◽  
pp. 106512
Author(s):  
Genbatu Ge ◽  
Jingbo Zhang ◽  
Xiaona Chen ◽  
Xiangjie Liu ◽  
Yuguang Hao ◽  
...  

2011 ◽  
Vol 13 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Longfei BING ◽  
Quanqin SHAO ◽  
Jiyuan LIU

2012 ◽  
Vol 212-213 ◽  
pp. 498-501
Author(s):  
Rui Guo ◽  
Sheng Le Cao

Scientific and reasonable water price is the foundation of beneficial operation of water supply project, and water pricing is on the basis of per cubic meter water supply cost. According to characteristics of water supply project in the plain irrigation area of the Yellow River, a research on calculation methods of agricultural water supply cost is made. Calculation formulas of project lines are put forward and an example was given.


Author(s):  
Dongying Yi ◽  
Yue Xu ◽  
Nan Wang ◽  
Xiaoyi Ma

The primary approach to realizing long-term runoff prediction involves combining a hydrological model with general circulation model. Previous studies on the Source area of the Yellow River were all based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data sets with defects in physical mechanisms. In this paper, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of CMIP6, which proved to perform well in arid and semi-arid regions, will be used to drive the Soil & Water Assessment Tool (SWAT) model and evaluate its applicability in runoff simulation at Tang Nahai Hydrological Station from 2011 to 2019. The occurrence of the extreme value of runoff, its change trend, and the year of abrupt change of runoff in the four Shared Socio-economic Pathway (SSP) scenarios (SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5) during 2021-2100 were analyzed. The results show that: (1) the runoff simulation evaluation index of SWAT driven by BCC-CSM2-MR in the research area from 2011 to 2019 is excellent, and the runoff simulation in the future is reliable and effective. (2) only the average annual runoff in scenario 5-8.5 (708.5m /s) from 2021 to 2100 was significantly higher than that in 2011-2019. Other scenarios are close to or less than the annual runoff observed. Most importantly, the maximum and minimum annual runoff values under the four scenarios all occurred during 2060-2080, so the attribution analysis of runoff extremum during 2060-2080 is worth further study. (3) it is necessary to evaluate whether the existing reservoirs and hydropower stations in the Yellow River basin can reasonably regulate and utilize the annual runoff under scenario 5-8.5.


Sign in / Sign up

Export Citation Format

Share Document