Embedded Linux Hardware/Software Architecture for Electrical Measurement Acquisition

Author(s):  
H. Ben Mansour ◽  
L. Chaarabi ◽  
K. Jelassi
Author(s):  
Shruti Makarand Kanade

 Cloud computing is the buzz word in today’s Information Technology. It can be used in various fields like banking, health care and education. Some of its major advantages that is pay-per-use and scaling, can be profitably implemented in development of Enterprise Resource Planning or ERP. There are various challenges in implementing an ERP on the cloud. In this paper, we discuss some of them like ERP software architecture by considering a case study of a manufacturing company.


Author(s):  
Stuart Friedman ◽  
Oskar Amster ◽  
Yongliang Yang ◽  
Fred Stanke

Abstract The use of Atomic Force Microscopy (AFM) electrical measurement modes is a critical tool for the study of semiconductor devices and process development. A relatively new electrical mode, scanning microwave impedance microscopy (sMIM), measures a material’s change in permittivity and conductivity at the scale of an AFM probe tip [1]. sMIM provides the real and imaginary impedance (Re(Z) and Im(Z)) of the probe-sample interface. By measuring the reflected microwave signal as a sample of interest is imaged with an AFM, we can in parallel capture the variations in permittivity and conductivity and, for doped semiconductors, variations in the depletion-layer geometry. An existing technique for characterizing doped semiconductors, scanning capacitance microscopy, modulates the tip-sample bias and detects the tip-sample capacitance with a lock-in amplifier. A previous study compares sMIM to SCM and highlights the additional capabilities of sMIM [2], including examples of nano-scale capacitance-voltage curves. In this paper we focus on the detailed mechanisms and capabilities of the nano-scale C-V curves and the ability to extract semiconductor properties from them. This study includes analytical and finite element modeling of tip bias dependent depletion-layer geometry and impedance. These are compared to experimental results on reference samples for both doped Si and GaN doped staircases to validate the systematic response of the sMIM-C (capacitive) channel to the doping concentration.


Author(s):  
C.H. Wang ◽  
S.P. Chang ◽  
C.F. Chang ◽  
J.Y. Chiou

Abstract Focused ion beam (FIB) is a popular tool for physical failure analysis (FA), especially for circuit repair. FIB is especially useful on advanced technology where the FIB is used to modify the circuit for new layout verification or electrical measurement. The samples are prepared till inter-metal dielectric (IMD), then a hole is dug or a metal is deposited or oxide is deposited by FIB. A common assumption is made that metal under oxide can not be seen by FIB. But a metal ion image is desired for further action. Dual beam, FIB and Scanning Electron Microscope (SEM), tools have a special advantage. When switching back and forth from SEM to FIB the observation has been made that the metal lines can be imaged. The details of this technique will be discussed below.


2010 ◽  
Vol 30 (9) ◽  
pp. 2370-2373 ◽  
Author(s):  
Jiong LANG ◽  
Yan-bing LIU ◽  
Shi-yong XIONG

Sign in / Sign up

Export Citation Format

Share Document