scholarly journals A KLM Perspective on Defeasible Reasoning for Description Logics

Author(s):  
Katarina Britz ◽  
Giovanni Casini ◽  
Thomas Meyer ◽  
Ivan Varzinczak
2021 ◽  
Author(s):  
Simone Coetzer ◽  
Katarina Britz

A successful application of ontologies relies on representing as much accurate and relevant domain knowledge as possible, while maintaining logical consistency. As the successful implementation of a real-world ontology is likely to contain many concepts and intricate relationships between the concepts, it is necessary to follow a methodology for debugging and refining the ontology. Many ontology debugging approaches have been developed to help the knowledge engineer pinpoint the cause of logical inconsistencies and rectify them in a strategic way. We show that existing debugging approaches can lead to unintuitive results, which may lead the knowledge engineer to opt for deleting potentially crucial and nuanced knowledge. We provide a methodological and design foundation for weakening faulty axioms in a strategic way using defeasible reasoning tools. Our methodology draws from Rodler’s interactive ontology debugging approach and extends this approach by creating a methodology to systematically find conflict resolution recommendations. Importantly, our goal is not to convert a classical ontology to a defeasible ontology. Rather, we use the definition of exceptionality of a concept, which is central to the semantics of defeasible description logics, and the associated algorithm to determine the extent of a concept’s exceptionality (their ranking); then, starting with the statements containing the most general concepts (the least exceptional concepts) weakened versions of the original statements are constructed; this is done until all inconsistencies have been resolved.


Author(s):  
Piero Andrea Bonatti ◽  
Iliana Mineva Petrova ◽  
Luigi Sauro

DLN is a recent approach that extends description logics with defeasible reasoning capabilities. In this paper we provide an overview on DLN, illustrating the underlying knowledge engineering requirements as well as the characteristic features that preserve DLN from some recurrent semantic and computational drawbacks. We also compare DLN with some alternative nonmonotonic semantics, enlightening the relationships between the KLM postulates and DLN.


2020 ◽  
Vol 20 (5) ◽  
pp. 751-766 ◽  
Author(s):  
Laura Giordano ◽  
Daniele Theseider Dupré

AbstractIn this paper we develop a concept aware multi-preferential semantics for dealing with typicality in description logics, where preferences are associated with concepts, starting from a collection of ranked TBoxes containing defeasible concept inclusions. Preferences are combined to define a preferential interpretation in which defeasible inclusions can be evaluated. The construction of the concept-aware multipreference semantics is related to Brewka’s framework for qualitative preferences. We exploit Answer Set Programming (in particular, asprin) to achieve defeasible reasoning under the multipreference approach for the lightweight description logic ξ$\mathcal L_ \bot ^ + $.


Semantic Web ◽  
2020 ◽  
pp. 1-21
Author(s):  
Manuel Atencia ◽  
Jérôme David ◽  
Jérôme Euzenat

Both keys and their generalisation, link keys, may be used to perform data interlinking, i.e. finding identical resources in different RDF datasets. However, the precise relationship between keys and link keys has not been fully determined yet. A common formal framework encompassing both keys and link keys is necessary to ensure the correctness of data interlinking tools based on them, and to determine their scope and possible overlapping. In this paper, we provide a semantics for keys and link keys within description logics. We determine under which conditions they are legitimate to generate links. We provide conditions under which link keys are logically equivalent to keys. In particular, we show that data interlinking with keys and ontology alignments can be reduced to data interlinking with link keys, but not the other way around.


2020 ◽  
Vol 176 (3-4) ◽  
pp. 349-384
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

In this paper we consider the most common TBox and ABox reasoning services for the description logic 𝒟ℒ〈4LQSR,x〉(D) ( 𝒟 ℒ D 4,× , for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment 4LQSR. 𝒟 ℒ D 4,× is a very expressive description logic. It combines the high scalability and efficiency of rule languages such as the SemanticWeb Rule Language (SWRL) with the expressivity of description logics. In fact, among other features, it supports Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left-hand side of inclusion axioms, role properties such as transitivity, symmetry, reflexivity, and irreflexivity, and data types. We further provide a KE-tableau-based procedure that allows one to reason on the main TBox and ABox reasoning tasks for the description logic 𝒟 ℒ D 4,× . Our algorithm is based on a variant of the KE-tableau system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ-rule. The novel system, called KEγ-tableau, turns out to be an improvement of the system introduced in [1] and of standard first-order KE-tableaux [2]. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that in several cases the performances of the KEγ-tableau-based reasoner are up to about 400% better than the ones of the other two systems.


Sign in / Sign up

Export Citation Format

Share Document