Pedestrian-Motorcycle Binary Classification Using Data Augmentation and Convolutional Neural Networks

Author(s):  
Robert Kerwin C. Billones ◽  
Argel A. Bandala ◽  
Laurence A. Gan Lim ◽  
Edwin Sybingco ◽  
Alexis M. Fillone ◽  
...  
2019 ◽  
Author(s):  
Lucas Ribeiro De Abreu ◽  
Reinaldo Augusto da Costa Bianchi

The RoboCup Soccer is one of the largest competitions in the robotics field of research. It considers the soccer match as a challenge for the robots and aims to win a match between humans versus robots by the year of 2050. The vision module is a critical system for the robots because it needs to quickly locate and classify objects of interest for the robot in order to generate the next best action. In this paper, an approach using Convolutional Neural Networks for object detection is described. The soccer ball is the chosen object and three state-ofart convolutional neural networks architectures were trained for the experiment using data augmentation and transfer learning techniques. The models were evaluated in a test set, yielding promising results in precision and frames per second. The best model achieved an average precision of 0.972 with an intersection over union of 50% and 9.64 frames per second, running on CPU.


2021 ◽  
Author(s):  
◽  
Lucas Ribeiro de Abreu

The RoboCup Soccer is one of the largest initiatives in the robotics field of research. This initiative considers the soccer match as a challenge for the robots and aims to win a match between humans versus robots by the year of 2050. The vision module is a critical system for the robots because it needs to quickly locate and classify objects of interest for the robot in order to generate the next best action. This work evaluates deep neural networks for the detection of the ball and robots. For such task, five convolutional neural networks architectures were trained for the experiment using data augmentation and transfer learning techniques. The models were evaluated in a test set, yielding promising results in precision and frames per second. The best model achieved an mAP of 0.98 and 14.7 frames per second, running on CPU


2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5192
Author(s):  
Maira Moran ◽  
Marcelo Faria ◽  
Gilson Giraldi ◽  
Luciana Bastos ◽  
Larissa Oliveira ◽  
...  

Dental caries is an extremely common problem in dentistry that affects a significant part of the population. Approximal caries are especially difficult to identify because their position makes clinical analysis difficult. Radiographic evaluation—more specifically, bitewing images—are mostly used in such cases. However, incorrect interpretations may interfere with the diagnostic process. To aid dentists in caries evaluation, computational methods and tools can be used. In this work, we propose a new method that combines image processing techniques and convolutional neural networks to identify approximal dental caries in bitewing radiographic images and classify them according to lesion severity. For this study, we acquired 112 bitewing radiographs. From these exams, we extracted individual tooth images from each exam, applied a data augmentation process, and used the resulting images to train CNN classification models. The tooth images were previously labeled by experts to denote the defined classes. We evaluated classification models based on the Inception and ResNet architectures using three different learning rates: 0.1, 0.01, and 0.001. The training process included 2000 iterations, and the best results were achieved by the Inception model with a 0.001 learning rate, whose accuracy on the test set was 73.3%. The results can be considered promising and suggest that the proposed method could be used to assist dentists in the evaluation of bitewing images, and the definition of lesion severity and appropriate treatments.


Sign in / Sign up

Export Citation Format

Share Document