Deep Representation Learning for Orca Call Type Classification

Author(s):  
Christian Bergler ◽  
Manuel Schmitt ◽  
Rachael Xi Cheng ◽  
Hendrik Schröter ◽  
Andreas Maier ◽  
...  
2019 ◽  
Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.


Author(s):  
Liva Ralaivola ◽  
Benoit Favre ◽  
Pierre Gotab ◽  
Frederic Bechet ◽  
Geraldine Damnati

2009 ◽  
Author(s):  
Youngja Park ◽  
Wilfried Teiken ◽  
Stephen C. Gates

2021 ◽  
pp. 108174
Author(s):  
Zahra Gharaee ◽  
Shreyas Kowshik ◽  
Oliver Stromann ◽  
Michael Felsberg

2021 ◽  
Author(s):  
Asma Baghdadi ◽  
Rahma fourati ◽  
yassine Aribi ◽  
Sawsan Daoud ◽  
Mariem Dammak ◽  
...  

<div>Epilepsy affect almost 1% of the worldwide population. An early diagnosis of seizure types is a patient-dependent process which is crucial for the treatment selection process. The selection of the proper treatment relies on the correct identification of seizures type. As such, identifying the seizure type has the biggest immediate influence on therapy than the seizure detection, reducing the neurologist’s efforts when reading and detecting seizures in EEG recordings. Most of the existing seizure detection and classification methods are conceptualized following the patient-dependent schema thus fail to perform well with unknown cases. Our work focuses on patient-independent schema for seizure type classification and pays more attention to the explainability of the underlying attention mechanism of our method. Using a channel-wise attention mechanism, a quantification of the EEG channels contribution is enabled. Therefore, results become more interpretable and a visualization of brain lobes contribution by seizure types is allowed. We evaluate our model for seizure detection and type classification on CHB-MIT and the recently released TUH EEG Seizure, respectively. Our model is able to classify 8 seizure types with an accuracy of 98.41%, directly from raw EEG data without any preprocessing. A case study showed a high correlation between the neurological baselines and the interpretable results of our model.</div>


2019 ◽  
Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.


2021 ◽  
Author(s):  
Asma Baghdadi ◽  
Rahma fourati ◽  
yassine Aribi ◽  
Sawsan Daoud ◽  
Mariem Dammak ◽  
...  

<div>Epilepsy affect almost 1% of the worldwide population. An early diagnosis of seizure types is a patient-dependent process which is crucial for the treatment selection process. The selection of the proper treatment relies on the correct identification of seizures type. As such, identifying the seizure type has the biggest immediate influence on therapy than the seizure detection, reducing the neurologist’s efforts when reading and detecting seizures in EEG recordings. Most of the existing seizure detection and classification methods are conceptualized following the patient-dependent schema thus fail to perform well with unknown cases. Our work focuses on patient-independent schema for seizure type classification and pays more attention to the explainability of the underlying attention mechanism of our method. Using a channel-wise attention mechanism, a quantification of the EEG channels contribution is enabled. Therefore, results become more interpretable and a visualization of brain lobes contribution by seizure types is allowed. We evaluate our model for seizure detection and type classification on CHB-MIT and the recently released TUH EEG Seizure, respectively. Our model is able to classify 8 seizure types with an accuracy of 98.41%, directly from raw EEG data without any preprocessing. A case study showed a high correlation between the neurological baselines and the interpretable results of our model.</div>


2021 ◽  
Vol 133 ◽  
pp. 103461
Author(s):  
Yiqiao Li ◽  
Koti Reddy Allu ◽  
Zhe Sun ◽  
Andre Y.C. Tok ◽  
Guoliang Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document