scholarly journals Large-scale unsupervised clustering of Orca vocalizations: a model for describing orca communication systems

Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.

2019 ◽  
Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.


2020 ◽  
Vol 10 (10) ◽  
pp. 3390
Author(s):  
Hui-Yong Bak ◽  
Seung-Bo Park

The shot-type decision is a very important pre-task in movie analysis due to the vast information, such as the emotion, psychology of the characters, and space information, from the shot type chosen. In order to analyze a variety of movies, a technique that automatically classifies shot types is required. Previous shot type classification studies have classified shot types by the proportion of the face on-screen or using a convolutional neural network (CNN). Studies that have classified shot types by the proportion of the face on-screen have not classified the shot if a person is not on the screen. A CNN classifies shot types even in the absence of a person on the screen, but there are certain shots that cannot be classified because instead of semantically analyzing the image, the method classifies them only by the characteristics and patterns of the image. Therefore, additional information is needed to access the image semantically, which can be done through semantic segmentation. Consequently, in the present study, the performance of shot type classification was improved by preprocessing the semantic segmentation of the frame extracted from the movie. Semantic segmentation approaches the images semantically and distinguishes the boundary relationships among objects. The representative technologies of semantic segmentation include Mask R-CNN and Yolact. A study was conducted to compare and evaluate performance using these as pretreatments for shot type classification. As a result, the average accuracy of shot type classification using a frame preprocessed with semantic segmentation increased by 1.9%, from 93% to 94.9%, when compared with shot type classification using the frame without such preprocessing. In particular, when using ResNet-50 and Yolact, the classification of shot type showed a 3% performance improvement (to 96% accuracy from 93%).


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


Author(s):  
Igor' Latyshov ◽  
Fedor Samuylenko

In this research, there was considered a challenge of constructing a system of scientific knowledge of the shot conditions in judicial ballistics. It was observed that there are underlying factors that are intended to ensureits [scientific knowledge] consistency: identification of the list of shot conditions, which require consideration when solving expert-level research tasks on weapons, cartridges and traces of their action; determination of the communication systems in the course of objects’ interaction, which present the result of exposure to the conditions of the shot; classification of the shot conditions based on the grounds significant for solving scientific and practical problems. The article contains the characteristics of a constructive, functional factor (condition) of weapons and cartridges influence, environmental and fire factors, the structure of the target and its physical properties, situational and spatial factors, and projectile energy characteristics. Highlighted are the forms of connections formed in the course of objects’ interaction, proposed are the author’s classifications of forensically significant shooting conditions with them being divided on the basis of the following criteria: production from the object of interaction, production from a natural phenomenon, production method, results weapon operation and utilization, duration of exposure, type of structural connections between interaction objects, number of conditions that apply when firing and the forming traces.


2020 ◽  
Author(s):  
Thomas Gaisl ◽  
Naser Musli ◽  
Patrick Baumgartner ◽  
Marc Meier ◽  
Silvana K Rampini ◽  
...  

BACKGROUND The health aspects, disease frequencies, and specific health interests of prisoners and refugees are poorly understood. Importantly, access to the health care system is limited for this vulnerable population. There has been no systematic investigation to understand the health issues of inmates in Switzerland. Furthermore, little is known on how recent migration flows in Europe may have affected the health conditions of inmates. OBJECTIVE The Swiss Prison Study (SWIPS) is a large-scale observational study with the aim of establishing a public health registry in northern-central Switzerland. The primary objective is to establish a central database to assess disease prevalence (ie, International Classification of Diseases-10 codes [German modification]) among prisoners. The secondary objectives include the following: (1) to compare the 2015 versus 2020 disease prevalence among inmates against a representative sample from the local resident population, (2) to assess longitudinal changes in disease prevalence from 2015 to 2020 by using cross-sectional medical records from all inmates at the Police Prison Zurich, Switzerland, and (3) to identify unrecognized health problems to prepare successful public health strategies. METHODS Demographic and health-related data such as age, sex, country of origin, duration of imprisonment, medication (including the drug name, brand, dosage, and release), and medical history (including the International Classification of Diseases-10 codes [German modification] for all diagnoses and external results that are part of the medical history in the prison) have been deposited in a central register over a span of 5 years (January 2015 to August 2020). The final cohort is expected to comprise approximately 50,000 to 60,000 prisoners from the Police Prison Zurich, Switzerland. RESULTS This study was approved on August 5, 2019 by the ethical committee of the Canton of Zurich with the registration code KEK-ZH No. 2019-01055 and funded in August 2020 by the “Walter and Gertrud Siegenthaler” foundation and the “Theodor and Ida Herzog-Egli” foundation. This study is registered with the International Standard Randomized Controlled Trial Number registry. Data collection started in August 2019 and results are expected to be published in 2021. Findings will be disseminated through scientific papers as well as presentations and public events. CONCLUSIONS This study will construct a valuable database of information regarding the health of inmates and refugees in Swiss prisons and will act as groundwork for future interventions in this vulnerable population. CLINICALTRIAL ISRCTN registry ISRCTN11714665; http://www.isrctn.com/ISRCTN11714665 INTERNATIONAL REGISTERED REPORT DERR1-10.2196/23973


Author(s):  
Richard Gowan

During Ban Ki-moon’s tenure, the Security Council was shaken by P5 divisions over Kosovo, Georgia, Libya, Syria, and Ukraine. Yet it also continued to mandate and sustain large-scale peacekeeping operations in Africa, placing major burdens on the UN Secretariat. The chapter will argue that Ban initially took a cautious approach to controversies with the Council, and earned a reputation for excessive passivity in the face of crisis and deference to the United States. The second half of the chapter suggests that Ban shifted to a more activist pressure as his tenure went on, pressing the Council to act in cases including Côte d’Ivoire, Libya, and Syria. The chapter will argue that Ban had only a marginal impact on Council decision-making, even though he made a creditable effort to speak truth to power over cases such as the Central African Republic (CAR), challenging Council members to live up to their responsibilities.


Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


2021 ◽  
Vol 1757 (1) ◽  
pp. 012121
Author(s):  
Mengting Song ◽  
Hang Zheng ◽  
Zhen Tao ◽  
Jia Jiang ◽  
Bin Pan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document