A Method of Intention Estimation for Human-Robot Interaction

Author(s):  
Jing Luo ◽  
Chao Liu ◽  
Ning Wang ◽  
Chenguang Yang
Author(s):  
Akif Durdu ◽  
Ismet Erkmen ◽  
Aydan M. Erkmen ◽  
Alper Yilmaz

Estimating and reshaping human intentions are among the most significant topics of research in the field of human-robot interaction. This chapter provides an overview of intention estimation literature on human-robot interaction, and introduces an approach on how robots can voluntarily reshape estimated intentions. The reshaping of the human intention is achieved by the robots moving in certain directions that have been a priori observed from the interactions of humans with the objects in the scene. Being among the only few studies on intention reshaping, the authors of this chapter exploit spatial information by learning a Hidden Markov Model (HMM) of motion, which is tailored for intelligent robotic interaction. The algorithmic design consists of two phases. At first, the approach detects and tracks human to estimate the current intention. Later, this information is used by autonomous robots that interact with detected human to change the estimated intention. In the tracking and intention estimation phase, postures and locations of the human are monitored by applying low-level video processing methods. In the latter phase, learned HMM models are used to reshape the estimated human intention. This two-phase system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approach shows promising performance in reshaping of detected intentions.


Robotics ◽  
2013 ◽  
pp. 1381-1406
Author(s):  
Akif Durdu ◽  
Ismet Erkmen ◽  
Aydan M. Erkmen ◽  
Alper Yilmaz

Estimating and reshaping human intentions are among the most significant topics of research in the field of human-robot interaction. This chapter provides an overview of intention estimation literature on human-robot interaction, and introduces an approach on how robots can voluntarily reshape estimated intentions. The reshaping of the human intention is achieved by the robots moving in certain directions that have been a priori observed from the interactions of humans with the objects in the scene. Being among the only few studies on intention reshaping, the authors of this chapter exploit spatial information by learning a Hidden Markov Model (HMM) of motion, which is tailored for intelligent robotic interaction. The algorithmic design consists of two phases. At first, the approach detects and tracks human to estimate the current intention. Later, this information is used by autonomous robots that interact with detected human to change the estimated intention. In the tracking and intention estimation phase, postures and locations of the human are monitored by applying low-level video processing methods. In the latter phase, learned HMM models are used to reshape the estimated human intention. This two-phase system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approach shows promising performance in reshaping of detected intentions.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095364
Author(s):  
Lan Ye ◽  
Genliang Xiong ◽  
Cheng Zeng ◽  
Hua Zhang

Collaborative robot has been widespread application prospect, such as homes, manufacturing, and health-care etc. In physical human-robot interaction, the external force appears inevitably in contact with environment or human, especially the interactive tasks such as trajectory tracking requirements and force compliance control. In this article, a method based on interaction intention estimation, which solve the problem of trajectory tracking accuracy and force compliance control in the same direction for the 7-DOF robot, is proposed. The increased virtual force depended on the manipuility performance index and inverse kinematic solution used the kinematic decoupling method based on the redundant angle avoid the singularity of redundant robot. Then, based on interactive intention estimation, a control strategy of variable impedance sliding mode theory in the presence of virtual force and contact force is proposed to achieve the trajectory tracking. We adopted hyperbolic tangent function to alleviate the chattering problem caused by switch function and validated the control system stability by Lyapunov theorem. Finally, Matlab simulations exhibit a 97.8% of high tracking accuracy amid the external force is 43% less than variable impedance parameters. It is therefore proved that the proposed method can achieve asymptotic tracking and the compliant behavior in physical human-robot interaction.


Sign in / Sign up

Export Citation Format

Share Document